ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:203KB ,
资源ID:1301963      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1301963-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版高考数学新设计一轮复习新课改省份专用课时跟踪检测(二十八) 解三角形的实际应用 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020版高考数学新设计一轮复习新课改省份专用课时跟踪检测(二十八) 解三角形的实际应用 WORD版含解析.doc

1、课时跟踪检测(二十八)解三角形的实际应用一、题点全面练1.如图,两座灯塔A和B与河岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的()A北偏东10B北偏西10C南偏东80 D南偏西80解析:选D由条件及题图可知,AB40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80.2如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75,30,此时气球的高是60 m,则河流的宽度BC等于()A240(1)m B180(1)mC120(1)m D30(1)m解析:选Ctan 15tan(6045)2,BC60tan 6060tan

2、 15120(1)(m)3一个大型喷水池的中央有一个强大喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45,沿点A向北偏东30前进100 m到达点B,在B点测得水柱顶端的仰角为30,则水柱的高度是()A50 m B100 mC120 m D150 m解析:选A作出示意图如图所示,设水柱高度是h m,水柱底端为C,则在RtBCD中,BCh,在ABC中,A60,ACh,AB100,根据余弦定理得,(h)2h210022h100cos 60,即h250h5 0000,即(h50)(h100)0,即h50,故水柱的高度是50 m.4地面上有两座相距120 m的塔

3、,在矮塔塔底望高塔塔顶的仰角为,在高塔塔底望矮塔塔顶的仰角为,且在两塔底连线的中点O处望两塔塔顶的仰角互为余角,则两塔的高度分别为()A50 m,100 m B40 m,90 mC40 m,50 m D30 m,40 m解析:选B设高塔高H m,矮塔高h m,在O点望高塔塔顶的仰角为.则tan ,tan,根据三角函数的倍角公式有.因为在两塔底连线的中点O望两塔塔顶的仰角互为余角,所以在O点望矮塔塔顶的仰角为,由tan ,tan,得.联立解得H90,h40.即两座塔的高度分别为40 m,90 m.5.如图,某住宅小区的平面图呈圆心角为120的扇形AOB,C是该小区的一个出入口,且小区里有一条平行

4、于AO的小路CD.已知某人从O沿OD走到D用了2 min,从D沿着DC走到C用了3 min.若此人步行的速度为50 m/min,则该扇形的半径的长度为()A50 m B50 mC50 m D50 m解析:选B设该扇形的半径为r(m),连接CO,如图所示由题意,得CD150(m),OD100(m),CDO60,在CDO中,由余弦定理,得CD2OD22CDODcos 60OC2,即150210022150100r2,解得r50(m)6.如图,为了测量河对岸电视塔CD的高度,小王在点A处测得塔顶D的仰角为30,塔底C与A的连线同河岸成15角,小王向前走了1 200 m到达M处,测得塔底C与M的连线同

5、河岸成60角,则电视塔CD的高度为_m.解析:在ACM中,MCA601545,AMC18060120,由正弦定理得,即,解得AC600.在ACD中,tanDAC,DC600600.答案:6007.如图,为了测量河对岸A,B两点之间的距离,观察者找到一个点C,从C点可以观察到点A,B;找到一个点D,从D点可以观察到点A,C;找到一个点E,从E点可以观察到点B,C.测量得到:CD2,CE2,D45,ACD105,ACB48.19,BCE75,E60,则A,B两点之间的距离为_.解析:依题意知,在ACD中,DAC30,由正弦定理得AC2,在BCE中,CBE45,由正弦定理得BC3.在ABC中,由余弦

6、定理得AB2AC2BC22ACBCcosACB10,解得AB.答案:8.如图所示,在一个坡度一定的山坡AC的顶上有一高度为25 m的建筑物CD,为了测量该山坡相对于水平地面的坡角,在山坡的A处测得DAC15,沿山坡前进50 m到达B处,又测得DBC45,根据以上数据可得cos _.解析:由DAC15,DBC45,可得DBA135,ADB30.在ABD中,根据正弦定理可得,即,所以BD100sin 15100sin(4530)25()在BCD中,由正弦定理得,即,解得sinBCD1.所以cos cos(BCD90)sinBCD1.答案:19如图所示,在一条海防警戒线上的点A,B,C处各有一个水声

7、监测点,B,C两点到点A的距离分别为20 km和50 km.某时刻,B收到发自静止目标P的一个声波信号,8 s后A,C同时接收到该声波信号,已知声波在水中的传播速度是1.5 km/s.(1)设A到P的距离为x km,用x表示B,C到P的距离,并求x的值;(2)求静止目标P到海防警戒线AC的距离解:(1)依题意,有PAPCx,PBx1.58x12.在PAB中,AB20,cosPAB.同理,在PAC中,AC50,cosPAC.因为cosPABcosPAC,所以,解得x31.(2)作PDAC于点D(图略),在ADP中,由cosPAD,得sinPAD,所以PDPAsinPAD314(km)故静止目标P

8、到海防警戒线AC的距离为4 km.10.已知在东西方向上有M,N两座小山,山顶各有一座发射塔A,B,塔顶A,B的海拔高度分别为AM100 m和BN200 m,一测量车在小山M的正南方向的点P处测得发射塔顶A的仰角为30,该测量车向北偏西60方向行驶了100 m后到达点Q,在点Q处测得发射塔顶B处的仰角为,且BQA,经测量tan 2,求两发射塔顶A,B之间的距离解:在RtAMP中,APM30,AM100,PM100.连接QM(图略),在PQM中,QPM60,PQ100,PQM为等边三角形,QM100.在RtAMQ中,由AQ2AM2QM2,得AQ200.在RtBNQ中,tan 2,BN200,BQ

9、100,cos .在BQA中,BA2BQ2AQ22BQAQcos (100)2,BA100.即两发射塔顶A,B之间的距离是100 m.二、专项培优练(一)易错专练不丢怨枉分1一船自西向东匀速航行,上午10时到达灯塔P的南偏西75,距灯塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则此船航行的速度为_n mile/h.解析:如图,由题意知MPN7545120,PNM45.在PMN中,MN6834 n mile.又由M到N所用的时间为14104小时,此船的航行速度v n mile/h.答案:2.如图,一位同学从P1处观测塔顶B及旗杆顶A,得仰角分别为和90.后退l m至点P2处

10、再观测塔顶B,仰角变为原来的一半,设塔CB和旗杆BA都垂直于地面,且C,P1,P2三点在同一条水平线上,则塔BC的高为_m;旗杆BA的高为_m(用含有l和的式子表示)解析:在RtBCP1中,BP1C,在RtP2BC中,P2.BP1CP1BP2P2,P1BP2,即P1BP2为等腰三角形,BP1P1P2l,BClsin .在RtACP1中,tan(90),AC,则BAACBClsin .答案:lsin (二)素养专练学会更学通3.直观想象、数学建模为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气象仪器,这种仪器可以弹射到空中进行气象观测如图所示,A,B,C三地位于同一水平面

11、上,这种仪器在C地进行弹射实验,观测点A,B两地相距100米,BAC60.在A地听到弹射声音的时间比B地晚秒在A地测得该仪器至最高点H处的仰角为30(已知声音的传播速度为340米/秒)(1)求A,C两地的距离;(2)求这种仪器的垂直弹射高度HC.解:(1)由题意,设ACx,因为在A地听到弹射声音的时间比B地晚秒,所以BCx340x40,在ABC内,由余弦定理得BC2AC2BA22BAACcosBAC,即(x40)2x210 000100x,解得x420.故A,C两地的距离为420米(2)在RtACH中,AC420,CAH30,所以CHACtanCAH140米故该仪器的垂直弹射高度CH为140米

12、4.数学建模如图所示,经过村庄A有两条夹角为60的公路AB,AC,根据规划要在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PMPNMN2(单位:千米)记AMN.(1)将AN,AM用含的关系式表示出来;(2)如何设计(即AN,AM为多长时),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)?解:(1)AMN,在AMN中,由正弦定理,得,所以ANsin ,AMsin(120)(2)在APM中,由余弦定理,得AP2AM2PM22AMPMcosAMPsin2(60)4sin(60)cos(60)1cos(2120)sin(2120)4sin(2120)cos(2120)sin(2150),0120(其中利用诱导公式可知sin(120)sin(60),当且仅当2150270,即60时,工厂产生的噪声对居民的影响最小,此时ANAM2千米

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3