1、课时训练(三十七)平移与旋转(限时:30分钟)|夯实基础|1.2019乐山下列四个图形中,可以由图K37-1通过平移得到的是() 图K37-1 图K37-22.2019兰州如图K37-3,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移,得到四边形A1B1C1D1,已知A(-3,5),B(-4,3),A1(3,3),则B1的坐标为()图K37-3A.(1,2)B.(2,1)C.(1,4)D.(4,1)3.2019天津如图K37-4,将ABC绕点C顺时针旋转得到DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()图K37-4A.AC=AD
2、B.ABEBC.BC=DED.A=EBC4.2019黄石如图K37-5,在平面直角坐标系中,边长为2的正方形的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90后,点B的对应点B的坐标是()图K37-5A.(-1,2)B.(1,4)C.(3,2)D.(-1,0)5.2019吉林把图K37-6中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()图K37-6A.30B.90C.120D.1806.2019宜昌如图K37-7,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,AOB=B=30,OA=2,将AOB绕点O逆时针旋转90,点B的对应
3、点B的坐标是()图K37-7A.(-1,2+3)B.(-3,3)C.(-3,2+3)D.(-3,3)7.2019黔东南州下面摆放的图案,从第2个起,每一个都是前一个按顺时针方向旋转90得到的,第2019个图案与第1个至第4个中的第个箭头方向相同(填序号).图K37-88.2019邵阳如图K37-9,将等边三角形AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将AOB绕点O顺时针旋转180得到AOB,则点B的坐标是.图K37-99.2019枣庄改编如图K37-10,点E是正方形ABCD的边DC上一点,把ADE绕点A顺时针旋转90到ABF的位置,若四边形AECF的面积为20,D
4、E=2,则AE的长为.图K37-1010.2019包头如图K37-11,在ABC中,CAB=55,ABC=25,在同一平面内,将ABC绕点A逆时针旋转70得到ADE,连接EC,BD,则tanDEC的值是.图K37-1111.如图K37-12,将RtABC绕直角顶点B逆时针旋转90得到DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.(1)求证:AE=CE;(2)若BC=2,求AB的长.图K37-12|能力提升|12.2019海南如图K37-13,将RtABC的斜边AB绕点A顺时针旋转(090)得到AE,直角边AC绕点A逆时针旋转(090)得到AF,连接EF,若AB=3,AC=2,且+=
5、B,则EF=.图K37-1313.2019青岛如图K37-14,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90,得到线段AB,则点B的对应点B的坐标是()图K37-14A.(-4,1)B.(-1,2)C.(4,-1)D.(1,-2)14.2019淄博如图K37-15,在正方形网格中,格点三角形ABC绕某点顺时针旋转角(0180)得到格点三角形A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则=度.图K37-1515.2019新疆如图K37-16,在ABC中,AB=AC=4,将ABC绕点A顺时针旋转30,得到ACD,延长AD交BC的延长线于点E,则DE的长为
6、.图K37-1616.2019北京已知AOB=30,H为射线OA上一定点,OH=3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足OMP为钝角,以点P为中心,将线段PM顺时针旋转150,得到线段PN,连接ON.(1)依题意补全图K37-17;(2)求证:OMP=OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.图K37-17【参考答案】1.D2.B解析由A(-3,5),A1(3,3)可知四边形ABCD先向下平移2个单位长度,再向右平移6个单位长度得到四边形A1B1C1D1,B(-4,3),B1的坐标为(2,1).3.D解
7、析由旋转的性质可知,AC=CD,但A不一定是60,所以不能证明AC=AD,所以选项A错误;由于旋转角度不确定,所以选项B不能确定;因为AB=DE,不确定AB和BC的数量关系,所以BC和DE的数量关系不能确定;由旋转的性质可知ACD=BCE,AC=DC,BC=EC,所以2A=180-ACD,2EBC=180-BCE,从而可证选项D是正确的.4.C解析如图,由旋转得:CB=CB=2,BCB=90,D,C,B三点共线.四边形ABCD是正方形,且O是AB的中点,OB=1,B(2+1,2),即B(3,2),故选C.5.C6.B解析如图,作BHy轴于H.由题意:OA=AB=2,BAH=60,ABH=30,
8、AH=12AB=1,BH=3,OH=3,B(-3,3),故选B.7.3解析20194=5043,故第2019个图案中的箭头方向与第3个图案相同,故答案为3.8.(-23,-2)解析作BHy轴于H,如图,OAB为等边三角形,OH=AH=2,BOA=60,BH=3OH=23,B点坐标为(23,2),等边三角形AOB绕点O顺时针旋转180得到AOB,点B的坐标是(-23,-2).故答案为(-23,-2).9.26解析由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,AD=25,DE=2,在RtADE中,AE=AD2+DE2=26,故选D.10.1解析根据旋转的性质得EAC=70,
9、EA=CA,AED=ACB=180-CAB-ABC=100,AEC=(180-70)2=55,DEC=45,tanDEC=tan45=1.11.解:(1)证明:将RtABC绕直角顶点B逆时针旋转90得到DBE,ABCDBE,BAC=CDF,BAC+ACB=90,CDF+ACB=90,DFC=90,DFAC,又点F是AC中点,DF垂直平分AC,AE=CE.(2)ABCDBE,BE=BC=2,CE=AE=2,AB=AE+BE=2+2.12.13解析+=B,EAF=BAC+B=90,AEF是直角三角形,AE=AB=3,AF=AC=2,EF=AE2+AF2=13.13.D解析如图,点B的坐标为(1,-
10、2).14.90解析旋转图形的对称中心到对应点的距离相等,分别作AA1,CC1的垂直平分线,两直线相交于点D,则点D即为旋转中心,连接AD,A1D,ADA1=90.15.23-2解析过点C作CFAE,垂足为F,由ABC绕点A顺时针旋转30得到ACD,可得BAC=CAD=30,AD=AC=4,AB=AC,ABC=ACB=75.E=ACB-CAE=45.在RtACF中,CAF=30,AC=4,CF=12AC=2.AF=42-22=23.在RtECF中,E=45,EF=CF=2.DE=AF+EF-AD=23+2-4=23-2.故答案为23-2.16.解:(1)如图所示:(2)证明:在OPM中,OMP
11、=180-POM-OPM=150-OPM,OPN=MPN-OPM=150-OPM,OMP=OPN.(3)过点P作PKOA于点K,过点N作NFOB于点F.OMP=OPN,PMK=NPF.在NPF和PMK中,NPF=PMK,NFO=PKM=90,PN=PM,NPFPMK(AAS),PF=MK,PNF=MPK,NF=PK.在RtNFO和RtPKQ中,ON=PQ,NF=PK,RtNFORtPKQ(HL),KQ=OF.设MK=y,PK=x,POA=30,PKOQ,OP=2x,OK=3x,OM=3x-y,OF=OP+PF=2x+y,MH=OH-OM=3+1-(3x-y),KH=OH-OK=3+1-3x,M与Q关于点H对称,MH=HQ,KQ=KH+HQ=3+1-3x+3+1-3x+y=23+2-23x+y,KQ=OF,23+2-23x+y=2x+y,整理得23+2=x(2+23),x=1,即PK=1,OP=2.