ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:105.70KB ,
资源ID:1300037      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1300037-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021版数学北师大版攻略大一轮复习精练:11-3 二项分布与正态分布(试题部分) WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021版数学北师大版攻略大一轮复习精练:11-3 二项分布与正态分布(试题部分) WORD版含解析.docx

1、11.3二项分布与正态分布探考情 悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.条件概率、相互独立事件及二项分布了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题2015北京,16相互独立事件的概率样本的数字特征2.正态分布及其应用利用实际问题的频率分布直方图,了解正态分布曲线的特点及曲线所表示的意义2017课标,19正态分布及其应用数学期望分析解读1.了解条件概率和两个事件相互独立的概念,掌握求条件概率的步骤,会求条件概率.2.掌握相互独立事件的概率求法,能用二项分布解决实际问题.3.了解正态分布与正态曲线的概念,掌

2、握正态曲线的性质.4.相互独立事件的概率为近几年高考的热点,中等以下难度.破考点 练考向【考点集训】考点一条件概率、相互独立事件及二项分布1.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传四个项目,每人限报其中一项,记事件A为“4名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(A|B)的值为()A.14B.34C.29D.59答案C2.(2015广东,13,5分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=.答案13考点二正态分布及其应用3.在某次高三联考数学测试中,学生成绩服

3、从正态分布(100,2)(0),若在(85,115)内的概率为0.75,则任意选取一名学生,该生成绩高于115的概率为()A.0.25B.0.1C.0.125D.0.5答案C4.某校有1 000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N(105,2)(0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为()A.150B.200C.300D.400答案C炼技法 提能力【方法集训】方法1独立重复试验及二项分布问题的求解方法1.(2018全国三模,8)某高三学生进行考试心理素质测试,场景相同的条件下每次通

4、过测试的概率为45,则连续测试4次,至少有3次通过的概率为()A.512625B.256625C.64625D.64125答案A2.(2017课标,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.答案1.963.(2018全国二模,13)设随机变量XB6,12,则P(X=3)=.答案5164.(2019铁东校级三模)设随机变量XB(2,p),若P(X1)=59,则D(X)=.答案49方法2正态分布及其应用方法5.(2019福建模拟)经统计,某市高三学生期末数学成绩XN(85,2),且P(80X90)=0.3,则从该市

5、任选一名高三学生,其成绩不低于90分的概率是()A.0.35B.0.65C.0.7D.0.85答案A6.设XN(1,12),YN(2,22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y2)P(Y1)B.P(X2)P(X1)C.对任意正数t,P(Xt)P(Yt)D.对任意正数t,P(Xt)P(Yt)答案C【五年高考】A组自主命题北京卷题组(2015北京,16,13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16;B组:12,13,15,16,17,14,a.假设所有病人的康复时间互相独立,从A,B两

6、组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)解析设事件Ai为“甲是A组的第i个人”,事件Bj为“乙是B组的第j个人”,i,j=1,2,7.由题意可知P(Ai)=P(Bj)=17,i,j=1,2,7.(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P(A5A6A7)=P(A5)+P(A6)+P(A7)=37.(2)设事件C为“甲的

7、康复时间比乙的康复时间长”.由题意知,C=A4B1A5B1A6B1A7B1A5B2A6B2A7B2A7B3A6B6A7B6.因此P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=1049.(3)a=11或a=18.B组统一命题、省(区、市)卷题组考点一条件概率、相互独立事件及二项分布(2015课标,4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学

8、通过测试的概率为()A.0.648B.0.432C.0.36 D.0.312答案A考点二正态分布及其应用1.(2015山东,8,5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量服从正态分布N(,2),则P(-+)=68.26%,P(-2+2)=95.44%)A.4.56%B.13.59%C.27.18%D.31.74%答案B2.(2017课标,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产

9、线在正常状态下生产的零件的尺寸服从正态分布N(,2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(-3,+3)之外的零件数,求P(X1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(-3,+3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性;(ii)下面是检验员在一天内抽取的16个零件的尺寸:经计算得x=116i=116xi=9.97,s=116i=116(xi-x)2=116(i=116xi2-16x2)0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,16.用样

10、本平均数x作为的估计值,用样本标准差s作为的估计值,利用估计值判断是否需对当天的生产过程进行检查.剔除(-3,+3)之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z服从正态分布N(,2),则P(-3Z+3)=0.997 4.0.997 4160.959 2,0.0080.09.解析本题考查了统计与概率中的二项分布和正态分布的性质及应用.(1)抽取的一个零件的尺寸在(-3,+3)之内的概率为0.997 4,从而零件的尺寸在(-3,+3)之外的概率为0.002 6,故XB(16,0.002 6).因此P(X1)=1-P(X=0)=1-0.997 4160.040 8.X的数学期望

11、为EX=160.002 6=0.041 6.(2)(i)如果生产状态正常,一个零件尺寸在(-3,+3)之外的概率只有0.002 6,一天内抽取的16个零件中,出现尺寸在(-3,+3)之外的零件的概率只有0.040 8,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由x=9.97,s0.212,得的估计值为=9.97,的估计值为=0.212,由样本数据可以看出有一个零件的尺寸在(-3,+3)之外,因此需对当天的生产过程进行检查.剔除(-3,+3)之外的数据9.22,剩下数据

12、的平均数为115(169.97-9.22)=10.02,因此的估计值为10.02.i=116xi2=160.2122+169.9721 591.134,剔除(-3,+3)之外的数据9.22,剩下数据的样本方差为115(1 591.134-9.222-1510.022)0.008,因此的估计值为0.0080.09.C组教师专用题组1.(2014课标,5,5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45答案A2.(2014课标,18,12

13、分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(,2),其中近似为样本平均数x,2近似为样本方差s2.(i)利用该正态分布,求P(187.8Z212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(i)的结果,求EX.附:15012.2.若ZN(,2),则P(-Z +)=0.682 6,

14、P(-2Z +2)=0.954 4.解析(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=1700.02+1800.09+1900.22+2000.33+2100.24+2200.08+2300.02=200,s2=(-30)20.02+(-20)20.09+(-10)20.22+00.33+1020.24+2020.08+3020.02=150.(2)(i)由(1)知,ZN(200,150),从而P(187.8Z212.2)=P(200-12.2Z200+12.2)=0.682 6.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6

15、,依题意知XB(100,0.682 6),所以EX=1000.682 6=68.26.3.(2015湖南,18,12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.解析(1)记事件A1=从甲箱中摸出的1个球是红球,A2=从乙箱中摸出的1个球是红球,B1=顾客抽奖1次获一等

16、奖,B2=顾客抽奖1次获二等奖,C=顾客抽奖1次能获奖.由题意知,A1与A2相互独立,A1A2与A1A2互斥,B1与B2互斥,且B1=A1A2,B2=A1A2+A1A2,C=B1+B2.因为P(A1)=410=25,P(A2)=510=12,所以P(B1)=P(A1A2)=P(A1)P(A2)=2512=15,P(B2)=P(A1A2+A1A2)=P(A1A2)+P(A1A2)=P(A1)P(A2)+P(A1)P(A2)=P(A1)1-P(A2)+1-P(A1)P(A2)=251-12+1-2512=12.故所求概率为P(C)=P(B1+B2)=P(B1)+P(B2)=15+12=710.(2

17、)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以XB3,15.于是P(X=0)=C30150453=64125,P(X=1)=C31151452=48125,P(X=2)=C32152451=12125,P(X=3)=C33153450=1125.故X的分布列为X0123P6412548125121251125X的数学期望为E(X)=315=35.【三年模拟】一、选择题(每小题5分,共10分)1.(2020届北京清华附中朝阳学校开学摸底,4)已知随机变量X满足条件XB(n,p),且E(X)=12,D(X)=125,那么n与p的值分别为()A.16,45B

18、.20,25C.15,45D.12,35答案C2.(2020届北京铁二中开学摸底,7)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体10位成员中使用移动支付的人数,DX=2.4,P(X=4)P(X=6),则p=()A.0.7B.0.6C.0.4D.0.3答案B二、填空题(共5分)3.(2019安徽金安校级模拟)已知某次数学考试的成绩服从正态分布N(102,42),则114分以上的成绩所占的百分比为.(附:P(-X+)=0.682 7,P(-2X+2)=0.954 5,P(-3X+3)=0.997 3)答案0.135%三、解答题(共15分)4.(2019云南昆

19、明模拟)某地区为贯彻习近平总书记关于“绿水青山就是金山银山”的精神,鼓励农户利用荒坡种植果树.某农户考察三种不同的果树苗A、B、C,经引种试验后发现,引种树苗A的自然成活率为0.8,引种树苗B、C的自然成活率均为p(0.7p0.9).(1)任取树苗A、B、C各一棵,估计自然成活的棵数为X,求X的分布列及E(X);(2)将(1)中的E(X)取得最大值时p的值作为B种树苗自然成活的概率.该农户决定引种n棵B种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.求一棵B种树苗最终成活的概率;若每棵树苗引种最终成活后可获利300元,不成活

20、的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B种树苗多少棵?解析(1)依题意,X的所有可能值为0,1,2,3,则P(X=0)=0.2(1-p)2=0.2p2-0.4p+0.2;P(X=1)=0.8(1-p)2+0.2C21p(1-p)=0.8(1-p)2+0.4p(1-p)=0.4p2-1.2p+0.8;P(X=2)=0.2p2+0.8C21p(1-p)=0.2p2+1.6p(1-p)=-1.4p2+1.6p;P(X=3)=0.8p2,X的分布列为X0123P0.2p2-0.4p+0.20.4p2-1.2p+0.8-1.4p2+1.6p0.8p2E(X)=0(0.2p2-0.4p

21、+0.2)+1(0.4p2-1.2p+0.8)+2(-1.4p2+1.6p)+30.8p2=2p+0.8.(2)当p=0.9时,E(X)取得最大值.一棵B树苗最终成活的概率为0.9+0.10.750.8=0.96.记Y为n棵树苗的成活棵数,M(n)为n棵树苗的利润,则YB(n,0.96),则E(Y)=0.96n,又M(n)=300Y-50(n-Y)=350Y-50n,则E(M(n)=350E(Y)-50n=286n,要使E(M(n)200 000,则有n699.3,所以该农户至少引种700棵树苗,就可获利不低于20万元.思路分析(1)依题意得X的所有可能值为0,1,2,3,求出概率,得到分布列,然后求得期望.(2)当p=0.9时,E(X)取得最大值,然后求解一棵B树苗最终成活的概率.记Y为n棵树苗的成活棵数,M(n)为n棵树苗的利润,利用二项分布的概率以及期望求解即可.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3