ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:40KB ,
资源ID:129851      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-129851-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教B版高中数学选修2-2 2-2-2 反证法 教案 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教B版高中数学选修2-2 2-2-2 反证法 教案 .doc

1、2.2.2 反证法一、教学目标1、知识目标:通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力.2、能力目标:了解反证法证题的基本步骤,会用反证法证明简单的命题.3、情感、态度与价值观目标:在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性;渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想.在学习和生活中遇到困难的时候,要学会换个角度思考问题,也许会使问题出现转机.二、教学重点.难点重点:1、理解反证法的概念,2、体会反证法证明命题的思路方法及反证法证题的步骤,3、用反证法证明简单的命题.难点:理解“反证法”证

2、明得出“矛盾的所在”即矛盾依据.三、学情分析反证过程中的批判思想更有助于学生正确的认识客观世界.在教学过程中,我们要重视培养学生利用反证法对客观世界的认识提出自己的问题,这正是反证法教学所要教给学生的,应该具有的数学能力,也是培养学生数学素质与数学素养的很好教学机会.四、教学方法探析归纳,讲练结合五、教学过程教学过程:复习:综合法与分析法综合法与分析法各有其特点.从需求解题思路来看,分析法执果索因,常常根底渐近,有希望成功;综合法由因导果,往往枝节横生,不容易奏效.就表达过程而论,分析法叙述烦琐,文辞冗长;综合法形式简洁,条理清晰.也就是说,分析法利于思考,综合法宜于表述.因此,在实际解题时,

3、常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.分析归纳,抽象概括通过对这两个个问题的解答,有学生自主探究反证法的概念及反证法证明的步骤.(1)定义:反证法:一般地,假设原命题不成立,(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.(2)步骤反证法证题的基本步骤:1假设原命题的结论不成立;(假设)2从这个假设出发,经过正确的推理,推出矛盾;(归缪)3因此说明假设错误,从而证明了原命题成立.(结论)反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这

4、个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种).用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个.归谬是反证法的关键,导出矛盾的过程没有固定的模式,但

5、必须从反设出发,否则推导将成为无源之水,无本之木.推理必须严谨.导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾.知识应用,深化理解例1、写出用“反证法”证明下列命题的第一步“假设”.【设计意图】:能否正确地写出假设,是解决问题的基础和保障(1)互补的两个角不能都大于90.(2)ABC中,最多有一个钝角(3)中至少有一个是正数例2:已知三个正数a,b, c成等比数列,但不成等差数列,求证:不成等差数列.【设计意图】:本例是否定性命题,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑采用反证法证明本例例3:用反证法证明

6、关于x的方程,当或时,至少有一个方程有实数根.【设计意图】:本例是“至少”“至多”等存在性问题.从正面证明,需要分成多种情形讨论,而从反面证明,只要研究一种或少数几种情形.故考虑采用反证法.例4、求证:方程中有且只有一个根.【设计意图】:本题是证明唯一性问题.需要证明两个方面,一是存在性;二是唯一性.当证明的结论中含“有且只有”“只有一个”“唯一存在”等形式时,由于假设结论易导出矛盾,故采用反证法证明其唯一性往往比较简单.六、当堂检测1否定下列命题的结论:(1) 在ABC中如果AB=AC,那么B=C. .(2) 如果点P在O外,则dr(d为P到O的距离,r为半径) (3) 在ABC中,至少有两个角是锐角. (4) 在ABC中,至多有只有一个直角. 2选择题:证明“在ABC中至多有一个直角或钝角”,第一步应假设:( )A三角形中至少有一个直角或钝角B三角形中至少有两个直角或钝角C三角形中没有直角或钝角D.三角形中三个角都是直角或钝角3用反证法证明“三角形中至少有一个内角不小于60”应先假设这个三角形中( )A有一个内角小于60 B每一个内角都小于60C有一个内角大于60 D每一个内角都大于60设计意图:目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律.七、课堂小结1.知识建构2.能力提高3.课堂体验八、课时练与测九、教学反思

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3