ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:135.50KB ,
资源ID:129479      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-129479-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018届高三(新课标)数学(理)大一轮复习课时达标检测(四十九) 直线与圆锥曲线 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018届高三(新课标)数学(理)大一轮复习课时达标检测(四十九) 直线与圆锥曲线 WORD版含解析.doc

1、课时达标检测(四十九) 直线与圆锥曲线练基础小题强化运算能力1已知双曲线1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则该直线的斜率的取值范围是()A. B(,)C. D, 解析:选C由题意知,右焦点为F(4,0),双曲线的两条渐近线方程为yx.当过点F的直线与渐近线平行时,满足与双曲线的右支有且只有一个交点,数形结合可知该直线的斜率的取值范围是,故选C.2已知经过点(0,)且斜率为k的直线l与椭圆y21有两个不同的交点P和Q,则k的取值范围是()A. B.C(,) D(,)(,)解析:选B由题意得,直线l的方程为ykx,代入椭圆方程得(kx)21,整理得x22kx10.直线l

2、与椭圆有两个不同的交点P和Q等价于8k244k220,解得k,即k的取值范围为.故选B.3过抛物线y22x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线()A有且只有一条 B有且只有两条C有且只有三条 D有且只有四条解析:选B通径2p2,|AB|x1x2p,|AB|32p,故这样的直线有且只有两条4斜率为1的直线l与椭圆y21相交于A,B两点,则|AB|的最大值为()A2 B. C. D.解析:选C设A,B两点的坐标分别为(x1,y1),(x2,y2),直线l的方程为yxt,由消去y,得5x28tx4(t21)0.则x1x2t,x1x2.|AB|x1x2| ,故当

3、t0时,|AB|max.5已知椭圆C:1(ab0),F(,0)为其右焦点,过F且垂直于x轴的直线与椭圆相交所得的弦长为2.则椭圆C的方程为_解析:由题意得解得故椭圆C的方程为1. 答案:1练常考题点检验高考能力一、选择题1椭圆ax2by21与直线y1x交于A,B两点,过原点与线段AB中点的直线的斜率为,则()A. B.C. D.解析:选A设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),结合题意,由点差法得,1,所以.2经过椭圆y21的一个焦点作倾斜角为45的直线l,交椭圆于A,B两点设O为坐标原点,则等于()A3 BC或3 D解析:选B依题意,当直线l经过椭圆的右焦点(1,0

4、)时,其方程为y0tan 45(x1),即yx1,代入椭圆方程y21并整理得3x24x0,解得x0或x,所以两个交点坐标分别为(0,1),同理,直线 l经过椭圆的左焦点时,也可得.3已知抛物线y22px的焦点F与椭圆16x225y2400的左焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|AF|,则点A的横坐标为()A2 B2 C3 D3解析:选D16x225y2400可化为1,则椭圆的左焦点为F(3,0),又抛物线y22px的焦点为,准线为x,所以3,即p6,即y212x,K(3,0)设A(x,y),则由|AK|AF|得(x3)2y22(x3)2y2,即x218x9y20,又

5、y212x,所以x26x90,解得x3.4已知抛物线y22px(p0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()Ax1 Bx1Cx2 Dx2解析:选B设A(x1,y1),B(x2,y2),两点在抛物线上,得(y1y2)(y1y2)2p(x1x2),又线段AB的中点的纵坐标为2,y1y24,又直线的斜率为1,1,2p4,p2,抛物线的准线方程为x1.5抛物线y24x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AKl,垂足为K,则AKF的面积是()A4 B3 C4 D8解析:选Cy24x,F(1,0),

6、准线l:x1,过焦点F且斜率为的直线l1:y(x1),与y24x联立,解得A(3,2),AK4,SAKF424.6若椭圆1的焦点在x轴上,过点作圆x2y21的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是()A.1 B.1C.1 D.1解析:选C由题可设斜率存在的切线的方程为yk(x1)(k为切线的斜率),即2kx2y2k10,由1,解得k,所以圆x2y21的一条切线的方程为3x4y50,可求得切点的坐标为,易知另一切点的坐标为(1,0),则直线AB的方程为y2x2,令y0得右焦点为(1,0),令x0得上顶点为(0,2),故a2b2c25,所以所求椭圆的方程为1.

7、二、填空题7设双曲线1的右顶点为A,右焦点为F.过点F平行于双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_解析:c5,设过点F平行于一条渐近线的直线方程为y(x5),即4x3y200,联立直线与双曲线方程,求得yB,则S(53).答案:8在平面直角坐标系xOy中,过y轴正方向上一点C(0,c)任作一条直线,与抛物线yx2相交于A,B两点,若2,则c的值为_解析:设过点C的直线为ykxc(c0),代入yx2得x2kxc,即x2kxc0,设A(x1,y1),B(x2,y2),则x1x2k,x1x2c,(x1,y1),(x2,y2),因为2,所以x1x2y1y22,即x1x2(kx1c

8、)(kx2c)2,即x1x2k2x1x2kc(x1x2)c22,所以ck2ckckc22,即c2c20,所以c2或c1(舍去)答案:29中心为原点,一个焦点为F(0,5)的椭圆,截直线y3x2所得弦中点的横坐标为,则该椭圆方程为_解析:由已知得c5,设椭圆的方程为1,联立得消去y得(10a2450)x212(a250)x4(a250)a2(a250)0,设直线y3x2与椭圆的交点坐标分别为(x1,y1),(x2,y2),由根与系数关系得x1x2,由题意知x1x21,即1,解得a275,所以该椭圆方程为1.答案:110已知抛物线C:y28x与点M(2,2),过C的焦点且斜率为k的直线与C交于A,

9、B两点若0,则k_.解析:如图所示,设F为焦点,易知F(2,0),取AB的中点P,过A,B分别作准线的垂线,垂足分别为G,H,连接MF,MP,由0,知MAMB,则|MP|AB|(|AF|BF|)(|AG|BH|),所以MP为直角梯形BHGA的中位线,所以MPAGBH,由|MP|AP|,得GAMAMPMAP,又|AG|AF|,AM为公共边,所以AMGAMF,所以AFMAGM90,则MFAB,所以k2.答案:2三、解答题11已知椭圆C:1(ab0)的两个焦点分别为F1(2,0),F2(2,0),离心率为.过点F2的直线l(斜率不为0)与椭圆C交于A,B两点,线段AB的中点为D,O为坐标原点,直线O

10、D交椭圆于M,N两点(1)求椭圆C的方程;(2)当四边形MF1NF2为矩形时,求直线l的方程解:(1)由题意可知解得a,b.故椭圆C的方程为1.(2)由题意可知直线l的斜率存在设其方程为yk(x2),点A(x1,y1),B(x2,y2),M(x3,y3),N(x3,y3),由得(13k2)x212k2x12k260,所以x1x2,则y1y2k(x1x24),所以AB的中点D的坐标为,因此直线OD的方程为x3ky0(k0)由解得y,x33ky3.因为四边形MF1NF2为矩形,所以F2MF2N0,即(x32,y3)(x32,y3)0,所以4xy0.所以40.解得k.故直线l的方程为x3y20或x3y20.12(2016大连双基测试)已知过点(2,0)的直线l1交抛物线C:y22px(p0)于A,B两点,直线l2:x2交x轴于点Q.(1)设直线QA,QB的斜率分别为k1,k2,求k1k2的值;(2)点P为抛物线C上异于A,B的任意一点,直线PA,PB交直线l2于M,N两点,2,求抛物线C的方程解:(1)设直线l1的方程为xmy2,点A(x1,y1),B(x2,y2)联立方程得y22pmy4p0,则y1y22pm,y1y24p.k1k20.(2)设点P(x0,y0),直线PA:yy1(xx1),当x2时,yM,同理yN.因为2,所以4yNyM2,即2,故p,所以抛物线C的方程为y2x.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3