ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:238KB ,
资源ID:129406      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-129406-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教A版高中数学选修1-1 专题2-2-2双曲线的简单几何性质 素材 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教A版高中数学选修1-1 专题2-2-2双曲线的简单几何性质 素材 .doc

1、双曲线的简单几何性质 -学习要点双曲线的简单几何性质双曲线(a0,b0)的简单几何性质范围双曲线上所有的点都在两条平行直线x=-a和x=a的两侧,是无限延伸的。因此双曲线上点的横坐标满足x-a或xa.对称性对于双曲线标准方程(a0,b0),把x换成-x,或把y换成-y,或把x、y同时换成-x、-y,方程都不变,所以双曲线(a0,b0)是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为双曲线的中心。顶点双曲线与它的对称轴的交点称为双曲线的顶点。双曲线(a0,b0)与坐标轴的两个交点即为双曲线的两个顶点,坐标分别为A1(-a,0),A2(a,0),顶点是双曲线

2、两支上的点中距离最近的点。两个顶点间的线段A1A2叫作双曲线的实轴;设B1(0,-b),B2(0,b)为y轴上的两个点,则线段B1B2叫做双曲线的虚轴。实轴和虚轴的长度分别为|A1A2|=2a,|B1B2|=2b。a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长。双曲线只有两个顶点,而椭圆有四个顶点,不能把双曲线的虚轴与椭圆的短轴混淆。双曲线的焦点总在实轴上。实轴和虚轴等长的双曲线称为等轴双曲线。离心率双曲线的焦距与实轴长的比叫做双曲线的离心率,用e表示,记作。因为ca0,所以双曲线的离心率。由c2=a2+b2,可得,所以决定双曲线的开口大小,越大,e也越大,双曲线开口就越开阔。所以离心率可以用

3、来表示双曲线开口的大小程度。等轴双曲线,所以离心率。渐近线经过点A2、A1作y轴的平行线x=a,经过点B1、B2作x轴的平行线y=b,四条直线围成一个矩形(如图),矩形的两条对角线所在直线的方程是。我们把直线叫做双曲线的渐近线;双曲线与它的渐近线无限接近,但永不相交。要点1:双曲线的简单几何性质例1求双曲线的实轴长和虚轴长、顶点坐标、焦点坐标、渐近线方程与离心率.【解析】把方程化为标准方程,由此可知实半轴长,虚半轴长,双曲线的实轴长,虚轴长,顶点坐标,焦点坐标,离心率,渐近线方程为【精彩点拨】在几何性质的讨论中要注意a和2a,b和2b的区别,另外也要注意焦点所在轴的不同,几何量也有不同的表示.

4、要点2:双曲线的渐近线例2.已知双曲线方程,求渐近线方程。(1);(2)【解析】(1)双曲线的渐近线方程为:即(2)双曲线的渐近线方程为:即【精彩点拨】双曲线的渐近线方程为,双曲线的渐近线方程为,即;若双曲线的方程为(,焦点在轴上,焦点要点3:求双曲线的离心率或离心率的取值范围例3.已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线的左支交于A、B两点,若是正三角形,求双曲线的离心率。【解析】,是正三角形,【精彩点拨】双曲线的离心率是双曲线几何性质的一个重要参数,求双曲线离心率的关键是由条件寻求a、c满足的关系式,从而求出要点4:双曲线的焦点三角形例4已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【解析】由双曲线的定义有:,.即.故的周长.【精彩点拨】双曲线的焦点三角形中涉及了双曲线的特征几何量,在双曲线的焦点三角形中,经常运用正弦定理、余弦定理、双曲线定义来解题,解题过程中,常对定义式两边平方探求关系

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3