1、2019-2020学年秋季高二入学(分班)考试数学试题全卷满分150分,考试用时120分钟第I卷(选择题 60分)一、选择题(本大题有12小题,每小题5分,共60分。)1.已知 是偶函数,且 ,则 ( )A.2 B.3 C.4 D.52.如图是某个集合体的三视图,则这个几何体的表面积是( )A. B. C. D.3.点 在直线 上运动, , ,则 的最小值是( ) A. B. C.3 D.44.若对圆上任意一点, 的取值与无关,则实数的取值范围是( )A. B. C. 或 D. 5.如图,在三棱锥V-ABC中,VO平面ABC,OCD,VA=VB,AD=BD,则下列结论中不一定成立的是( )A.
2、 AC=BC B. VCVD C. ABVC D. SVCDAB=SABCVO6.已知向量满足, , 的夹角为,如图,若, , ,则为( )A. B. C. D. 7.等差数列的首项为1,公差不为0若成等比数列,则前6项的和为()A. 24 B. 3 C. 3 D. 88.设函数满足对任意的,都有,且,则( )A. 2016 B. 2017 C. 4032 D. 40349.函数的图像的一条对称轴为( )A. B. C. D. 10.如图,在平面直角坐标系中,角的始边为轴的非负半轴,终边与单位圆的交点为,将绕坐标原点逆时针旋转至,过点作轴的垂线,垂足为记线段的长为,则函数的图象大致是()A B
3、. C. D. 11.若直角坐标平面内的两个不同点 、 满足条件: 、 都在函数 的图像上; 、 关于原点对称,则称点对 是函数 的一对“友好点对”(注:点对 与 看作同一对“友好点对”)已知函数 ,则此函数的“友好点对”有( )对A.0 B.1 C.2 D.312.将函数f(x)sin2xsincos2xcossin()的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数yg(x)的图象,则函数g(x)在0, 上的最大值和最小值分别为 ()A. , B. , C. , D. , 第II卷(非选择题 90分)二、填空题(本大题有4小题,每小题5分,共20分。)13.在中,角所对边分别为,若,
4、则_14.如图,在正方体AC1中,AA1与B1D所成角的余弦值是_15.已知是定义在上的偶函数,并且,当时, ,则的值为_. 16.给出下列四个命题:的对称轴为;函数的最大值为2;函数的周期为2;函数在上是增函数其中正确命题是_三、解答题(本大题有6小题,共70分。)17. (12分)已知若,求函数的定义域;当时,函数有意义,求实数的取值范围.18. (10分)如图所示,已知垂直于圆所在平面, 是圆的直径, 是圆的圆周上异于的任意一点, 且,点是线段的中点.求证: 平面.19. (12分)已知, ,设.(1)求函数的最小正周期;(2)由的图象经过怎样变换得到的图象?试写出变换过程;(3)当时,
5、求函数的最大值及最小值.20. (14分)如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD上划出一片三角形地块CMN建设美丽乡村生态公园,给村民休闲健身提供去处点M,N分别在边AB,AD上 ()当点M,N分别是边AB,AD的中点时,求MCN的余弦值;()由于村建规划及保护生态环境的需要,要求AMN的周长为2千米,请探究MCN是否为定值,若是,求出此定值,若不是,请说明理由21. (12分)已知数列中, , ().(1)求证:数列是等差数列,并求数列的通项公式;(2)设, ,试比较与的大小.22. (10分)某厂拟生产甲、乙两种适销产品,每件销售收入分别为3
6、000元,2000元甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1,2,加工一件乙设备所需工时分别为2,1A、B两种设备每月有效使用台时数分别为400和500,分别用表示计划每月生产甲,乙产品的件数()用列出满足生产条件的数学关系式,并画出相应的平面区域;()问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入参考答案一、选择题(本题有12小题,每小题5分,共60分。)1.D 2.B 3.C 4.D 5.B 6.D 7.A 8.C 9.C 10.B 11.B 12.C二、填空题(本题有4小题,每小题5分,共20分。)13. 14. 15.3 16
7、.三、解答题(本题有6小题,共70分。) 17. (12分)解:(1)当则要 解得即所以 的定义域为(2)当 时,令则有意义,即在上恒成立即在上恒成立.因为当时, 所以所以18. (10分)证明:平面,又是的直径,而,平面又平面,且,平面.19. (12分)解:(1)的最小正周期.(2)把的图象上所有点向左平移个单位得到的图象;再把的图象上所有点的横坐标缩短到原来的,纵坐标不变得到的图象;再把的图象上所有点的纵坐标伸长到原来的倍,横坐标不变得到.(3),.当,即时, 有最大值,当,即时, 有最小值.20. (14分)解:()当点M,N分别是边AB,AD的中点时,设DCN=BCM=,则MCN=
8、2,由条件得CD=BC=1,DN=BM= ,CN=CM= ,所以sin= ,cos= , 所以cosMCN=cos( 2)=sin2=2sincos= ,即MCN的余弦值是 ()设BCM=,DCN=,AM=x,AN=y,则BM=1x,DN=1y,在CBM中,tan=1x,在CDN中,tan=1y,所以tan(+)= = = ,(*)因为AMN的周长为2千米,所以x+y+ =2,化简得xy=2(x+y)2,将上式代入(*)式,可得tan(+)= = = =1,又,所以+= ,所以MCN是定值,且MCN= 21.解:(1)解:, (),即.是首项为,公差为的等差数列.从而.(2),由(1)知.(),而,当时,有;当时,有.22. (10分)解:()设甲、乙两种产品月的产量分别为x,y件,约束条件是,由约束条件画出可行域,如图所示的阴影部分 ()设每月收入为z千元,目标函数是z=3x+2y由z=3x+2y可得y=x+z,截距最大时z最大结合图象可知,z=3x+2y在A处取得最大值由 可得A(200,100),此时z=800故安排生产甲、乙两种产品月的产量分别为200,100件可使月收入最大,最大为80万元