ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:2.26MB ,
资源ID:127673      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-127673-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2018届高三理科数学(新课标)二轮复习专题整合高频突破习题:第一部分 思想方法研析指导 思想方法训练2分类讨论思想 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2018届高三理科数学(新课标)二轮复习专题整合高频突破习题:第一部分 思想方法研析指导 思想方法训练2分类讨论思想 WORD版含答案.doc

1、思想方法训练2分类讨论思想能力突破训练1.已知函数f(x)=若存在x1,x2R,且x1x2,使得f(x1)=f(x2)成立,则实数a的取值范围是()A.(-,2)B.(-,4)C.2,4D.(2,+)2.在ABC中,内角A,B,C所对的边分别是a,b,c,若b2+c2-a2=bc,且b=a,则下列关系一定不成立的是()A.a=cB.b=cC.2a=cD.a2+b2=c23.若a0,且a1,p=loga(a3+1),q=loga(a2+1),则p,q的大小关系是()A.p=qB.pqD.当a1时,pq;当0a1时,p0,且x1,则函数y=lg x+logx10的值域为()A.RB.2,+)C.(

2、-,-2D.(-,-22,+)7.设Sn是等比数列an的前n项和,S3,S9,S6成等差数列,且a2+a5=2am,则m等于()A.6B.7C.8D.108.已知三棱锥S-ABC的所有顶点都在球O的球面上,AB=BC=CA=3,SA=SB=SC,球心O到平面ABC的距离为1,则SA与平面ABC所成角的大小为()A.30B.60C.30或60D.45或609.已知函数y=ax(a0,且a1)在1,2上的最大值比最小值大,则a的值是.10.已知函数f(x)=|ln x|,g(x)=则方程|f(x)+g(x)|=1实根的个数为.11.已知函数f(x)=2asin2x-2asin xcos x+a+b

3、(a0)的定义域为,值域为-5,1,求常数a,b的值.12.设a0,函数f(x)=x2-(a+1)x+a(1+ln x).(1)求曲线y=f(x)在(2,f(2)处与直线y=-x+1垂直的切线方程;(2)求函数f(x)的极值.思维提升训练13.若直线l过点P且被圆x2+y2=25截得的弦长是8,则直线l的方程为()A.3x+4y+15=0B.x=-3或y=-C.x=-3D.x=-3或3x+4y+15=014.已知函数f(x)=则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是(注:e为自然对数的底数)()A.(-1,0B.C.(-1,0D.15.已知a为实数,函数f(x)=|x2-a

4、x|在区间0,1上的最大值记为g(a).当a=时,g(a)的值最小.16.已知函数f(x)=aln x+x2(a为实数).(1)求函数f(x)在区间1,e上的最小值及相应的x值;(2)若存在x1,e,使得f(x)(a+2)x成立,求实数a的取值范围.17.设函数f(x)=cos 2x+(-1)(cos x+1),其中0,记|f(x)|的最大值为A.(1)求f(x);(2)求A;(3)证明|f(x)|2A.参考答案思想方法训练2分类讨论思想能力突破训练1.B解析当-1时,显然满足条件,即a2a-5,即2a4.综上知,a4,故选B.2.B解析在ABC中,由余弦定理得cosA=,则A=又b=a,由正

5、弦定理,得sinB=sinA=,则B=或B=当B=时,ABC为直角三角形,选项C,D成立;当B=时,ABC为等腰三角形,选项A成立,故选B.3.C解析当0a1时,y=ax和y=logax在其定义域上均为减函数,a3+1loga(a2+1),即pq.当a1时,y=ax和y=logax在其定义域上均为增函数,a3+1a2+1,loga(a3+1)loga(a2+1),即pq.综上可得pq.4.C解析焦点在x轴上时,此时离心率e=;焦点在y轴上时,此时离心率e=,故选C.5.C解析不妨设|AB|=2,以AB中点O为原点,AB所在直线为x轴建立平面直角坐标系xOy,则A(-1,0),B(1,0),设M

6、(x,y),则N(x,0),=(0,-y),=(x+1,0),=(1-x,0),代入已知式子得x2+y2=,当=1时,曲线为A;当=2时,曲线为B;当1时,y=lgx+logx10=lgx+2=2;当0x1时,y=ax在区间1,2上递增,故a2-a=,得a=;当0a1时,y=ax在区间1,2上递减,故a-a2=,得a=故a=或a=10.4解析f(x)=g(x)=(1)当0x1时,方程化为|-lnx+0|=1,解得x=或x=e(舍去).所以此时方程只有1个实根(2)当1x2时,方程可化为|lnx+2-x2|=1.设h(x)=lnx+2-x2,则h(x)=-2x=因为1x2,所以h(x)=0,即函

7、数h(x)在区间(1,2)上单调递减.因为h(1)=ln1+2-12=1,h(2)=ln2+2-22=ln2-2,所以h(x)(ln2-2,1).又ln2-2-1,故当1x2时方程只有1解.(3)当x2时,方程可化为|lnx+x2-6|=1.记函数p(x)=lnx+x2-6,显然p(x)在区间2,+)上单调递增.故p(x)p(2)=ln2+22-6=ln2-21,所以方程|p(x)|=1有2个解,即方程|lnx+x2-6|=1有2个解.综上可知,方程|f(x)+g(x)|=1共有4个实根.11.解f(x)=a(1-cos2x)-asin2x+a+b=-2asin+2a+b.x,2x+,-sin

8、1.因此,由f(x)的值域为-5,1,可得或解得12.解(1)由已知x0,f(x)=x-(a+1)+因为曲线y=f(x)在(2,f(2)处切线的斜率为1,所以f(2)=1,即2-(a+1)+=1,所以a=0,此时f(2)=2-2=0,故曲线f(x)在(2,f(2)处的切线方程为x-y-2=0.(2)f(x)=x-(a+1)+当0a0,函数f(x)单调递增;若x(a,1),则f(x)0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-a2+alna,极小值是f(1)=-当a=1时,若x(0,1),则f(x)0,若x=1,则f(x

9、)=0,若x(1,+),则f(x)0,所以函数f(x)在定义域内单调递增,此时f(x)没有极值点,也无极值.当a1时,若x(0,1),则f(x)0,函数f(x)单调递增;若x(1,a),则f(x)0,函数f(x)单调递增,此时x=1是f(x)的极大值点,x=a是f(x)的极小值点,函数f(x)的极大值是f(1)=-,极小值是f(a)=-a2+alna.综上,当0a1时,f(x)的极大值是-,极小值是-a2+alna.思维提升训练13.D解析若直线l的斜率不存在,则该直线的方程为x=-3,代入圆的方程解得y=4,故直线l被圆截得的弦长为8,满足条件;若直线l的斜率存在,不妨设直线l的方程为y+=

10、k(x+3),即kx-y+3k-=0,因为直线l被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线l的距离为,解得k=-,此时直线l的方程为3x+4y+15=0.14.C解析因为方程f(x)=ax恰有两个不同的实数根,所以y=f(x)与y=ax的图象有2个交点,a表示直线y=ax的斜率.当a0,x1时,y=设切点为(x0,y0),k=,所以切线方程为y-y0=(x-x0),而切线过原点,所以y0=1,x0=e2,k=,所以切线l1的斜率为设过原点与y=x+1平行的直线为l2,则直线l2的斜率为,所以当直线在l1和l2之间时,符合题意,此时实数a的取值范围是当a0时,设过原

11、点与点(1,-1)的直线为l3,其斜率为-1,则在l3的位置以O为中心逆时针旋转一直转到水平位置都符合题意,此时实数a的取值范围是(-1,0.综上所述,实数a的取值范围是(-1,0,故选C.15.2-2解析当a0时,在区间0,1上,f(x)=|x2-ax|=x2-ax,且在区间0,1上为增函数,当x=1时,f(x)取得的最大值为f(1)=1-a;当0a1时,f(x)=在区间内递增,在区间上递减,在区间(a,1上递增,且f,f(1)=1-a,-(1-a)=(a2+4a-4),当0a2-2时,1-a.当2-2a1时,1-a;当1a2时,f(x)=-x2+ax在区间上递增,在区间上递减,当x=时,f

12、(x)取得最大值f;当a2时,f(x)=-x2+ax在区间0,1上递增,当x=1时,f(x)取得最大值f(1)=a-1.则g(a)=在区间(-,2-2)上递减,在区间2-2,+)上递增,即当a=2-2时,g(a)有最小值.16.解(1)f(x)=alnx+x2的定义域为(0,+),f(x)=+2x=当x1,e时,2x22,2e2.若a-2,则f(x)在区间1,e上非负(仅当a=-2,x=1时,f(x)=0),故f(x)在区间1,e上单调递增,此时f(x)min=f(1)=1;若-2e2a-2,令f(x)0,解得1x0,解得xe,此时f(x)单调递增,所以f(x)min=fln;若a-2e2,f

13、(x)在区间1,e上非正(仅当a=-2e2,x=e时,f(x)=0),故f(x)在区间1,e上单调递减,此时f(x)min=f(e)=a+e2.综上所述,当a-2时,f(x)min=1,相应的x=1;当-2e2a-2时,f(x)min=ln,相应的x=;当a-2e2时,f(x)min=a+e2,相应的x=e.(2)不等式f(x)(a+2)x可化为a(x-lnx)x2-2x.由x1,e,知lnx1x且等号不能同时成立,得lnx0,因而a,x1,e,令g(x)=(x1,e),则g(x)=,当x1,e时,x-10,lnx1,x+2-2lnx0,从而g(x)0(仅当x=1时取等号),所以g(x)在区间

14、1,e上是增函数,故g(x)min=g(1)=-1,所以实数a的取值范围是-1,+).17.(1)解f(x)=-2sin2x-(-1)sinx.(2)解(分类讨论)当1时,|f(x)|=|cos2x+(-1)(cosx+1)|+2(-1)=3-2=f(0).因此A=3-2.当01时,将f(x)变形为f(x)=2cos2x+(-1)cosx-1.令g(t)=2t2+(-1)t-1,则A是|g(t)|在-1,1上的最大值,g(-1)=,g(1)=3-2,且当t=时,g(t)取得极小值,极小值为g=-1=-令-11,解得当0时,g(t)在区间(-1,1)内无极值点,|g(-1)|=,|g(1)|=2-3,|g(-1)|g(1)|,所以A=2-3.当0,知g(-1)g(1)g又-|g(-1)|=0,所以A=综上,A=(3)证明由(1)得|f(x)|=|-2sin2x-(-1)sinx|2+|-1|.当0时,|f(x)|1+2-42(2-3)=2A.当1时,A=1,所以|f(x)|1+2A.当1时,|f(x)|3-16-4=2A.所以|f(x)|2A.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3