1、4.2等可能条件下的概率(一)(2)教学目标【知识与能力】进一步理解等可能事件的意义,掌握等可能条件下的古典概型的两个基本特征,会把事件分解成等可能的结果(基本事件).【过程与方法】通过具体实例学会用列举法(即列表或画树状图)列举出古典类型的随机实验的所有等可能结果(基本事件)并计算一些随机事件发生的概率.【情感态度价值观】在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型.教学重难点【教学重点】通过列表、树状图来表示等可能条件下的概率.【教学难点】 通过列表、树状图来表示等可能条件下的概率.课前准备无教学过程创设情境抛掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率有
2、多大?对抛掷一枚质地均匀的硬币2次的试验,我们将第1次正面朝上,第2次正面朝上,记作(正,正);第1次正面朝上,第2次反面朝上,记作(正,反);第1次反面朝上,第2次正面朝上,记作(反,正);第1次反面朝上,第2次反面朝上,记作(反,反)这样,我们可以利用表格列出所有可能出现的结果:正面反面结果正反正(正,正)(正,反)反(反,正)(反,反)这4种结果是等可能的其中,2次抛掷的结果都是“正面朝上”只有1种,所以P(正,正)我们还可以画图,列出2次抛掷所有等可能出现的结果:像这样的图,我们称之为树状图,它可以帮助我们不重复、不遗漏地列出所有可能出现的结果思考“先后两次掷一枚硬币”与“同时掷两枚硬
3、币”,这两种试验的所有可能结果一样吗?探索活动活动1同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点数相同;(2)两个骰子点数的和是9;(3)至少有一个骰子的点数为2问题1如果把题中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?来源:Zxxk.Com小结1 当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法活动2 甲、乙、丙三只不透明的口袋中都装有1个白球、1个红球,它们除颜色外都相同,搅匀后分别从三只口袋中任意摸出1个球,问从三只口袋摸出的都是红球的概率是多少?问题2此时,列表能否列举出
4、所有可能的结果?小结2 当一次试验要涉及3个或更多的因素(例如从三只口袋中摸球)时,列表就不方便了,为了不重不漏地列出所有可能的结果,通常采用树形图当事件要经过多次步骤(三步以上)完成时,用这种“树形图”的方法求事件的概率很有效思考(1)列举法有哪些?列表与画树状图分别有哪些适用条件?(2)若从三只口袋摸出的球中有一只白球、两只红球的概率是多少?例题选讲例1 一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀后从袋中任意摸出1个球,记录颜色后放回、摇匀,再从中任意摸出1个球求两次摸到红球颜色的概率例2 北京2008年奥运会吉祥物“福娃”是“贝贝、晶晶、欢欢、迎迎、妮妮”:将5张分别印有5个“福娃”图案的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件的发生的概率:(1)取出的2张卡片相同;(2)取出的2张卡片中,1张为“欢欢”,1张为“贝贝”;(3)取出的2张卡片中,至少有1张为“欢欢”拓展延伸一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?课堂小结举例说明,如何利用“树状图”“表格”列出所有等可能出现的结果?它们各有怎样的特点?