ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:207.50KB ,
资源ID:127426      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-127426-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020届江苏高考数学(理)二轮复习微专题教师用书:微专题25 数列中常见的求和问题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020届江苏高考数学(理)二轮复习微专题教师用书:微专题25 数列中常见的求和问题 WORD版含解析.doc

1、微专题25数列中常见的求和问题真 题 感 悟(2018江苏卷)已知集合Ax|x2n1,nN*,Bx|x2n,nN*.将AB的所有元素从小到大依次排列构成一个数列an.记Sn为数列an的前n项和,则使得Sn12an1成立的n的最小值为_.解析所有的正奇数和2n(nN*)按照从小到大的顺序排列构成an,在数列an中,25前面有16个正奇数,即a2125,a3826.当n1时,S1112a224,不符合题意;当n2时,S2312a336,不符合题意;当n3时,S3612a448,不符合题意;当n4时,S41012a560,不符合题意;当n26时,S264416250312a28540,符合题意.故使

2、得Sn12an1成立的n的最小值为27.答案27考 点 整 合数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并.(2)错位相减法:主要用于求数列anbn的前n项和,其中an,bn分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中an是各项均不为零的等差数列,c为常数)的数列.热点一分组转化法求和【例1】 (2019南京高三月考)已知等差数列an的首项a12,前n项和为Sn,等比数列bn的首项b11,且a

3、2b3,S36b2,nN*.(1)求数列an和bn的通项公式;(2)数列cn满足cnbn(1)nan,记数列cn的前n项和为Tn,求Tn.解(1)设数列an的公差为d,数列bn的公比为q.a12,b11,且a2b3,S36b2,解得an2(n1)22n,bn2n1.(2)由题意:cnbn(1)nan2n1(1)n2n.Tn(1242n1)2468(1)n2n,若n为偶数,则Tn(24)(68)2(n1)2n2n122nn1.若n为奇数,则Tn(24)(68)2(n2)2(n1)2n2n122n2nn2.Tn探究提高1.在处理一般数列求和时,一定要注意运用转化思想,把一般的数列求和转化为等差数列

4、或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n进行讨论,最后再验证是否可以合并为一个表达式.2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.【训练1】 已知an是等比数列,其前n项和为Sn(nN*),且,S663.(1)求数列an的通项公式;(2)若对任意的nN*,bn是log2an和log2an1的等差中项,求数列(1)nb的前2n项和.解(1)设数列an的公比为q.由已知,有,解得q2或q1.又由S6a163,知q1,所以a163,得a11.所以an2n1,nN*.(2)由题意,得bn(log2anlog2an1)(log22n1log22n)

5、n,即bn是首项为,公差为1的等差数列.设数列(1)nb的前n项和为Tn,则T2n(bb)(bb)(bb)b1b2b3b4b2n1b2nn2n2.热点二裂项相消法求和【例2】 (2019扬州期末)已知各项都是正数的数列an的前n项和为Sn,且2Snaan,数列bn满足b1,2bn1bn.(1)求数列an,bn的通项公式;(2)设数列cn满足cn,求和c1c2cn.解(1)2Snaan,2Sn1aan1,得2an1aaan1an,即(an1an)(an1an1)0.因为an是正数数列,所以an1an10,即an1an1.在2Snaan中,令n1,得a11,所以an是以a11为首项,公差为1的等差

6、数列.所以ann.由2bn1bn得,所以数列是等比数列,其中首项为,公比为,所以,即bn.(2)由(1)得cn,所以cn,所以c1c2cn.探究提高1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【训练2】 (2015江苏卷)设数列an满足a11,且an1ann1(nN*),则数列前10项的和为_.解析a11,an1ann1,a2a12,a3a23,anan1n(n2),将以上n1个式子相加得ana123n,即an(n2).又n1时,a1也

7、适合上式,故an.令bn,故bn2,故S10b1b2b102.答案热点三错位相减法求和【例3】 已知an为等差数列,前n项和为Sn(nN*),bn是首项为2的等比数列,且公比大于0,b2b312,b3a42a1,S1111b4.(1)求an和bn的通项公式;(2)求数列a2nbn的前n项和(nN*).解(1)设等差数列an的公差为d,等比数列bn的公比为q,由已知b2b312,得b1(qq2)12,而b12,所以q2q60,又因为q0,故解得q2,所以bn2n.由b3a42a1,可得3da18,由S1111b4,可得a15d16,联立,解得a11,d3,由此可得an3n2.所以an的通项公式为

8、an3n2,bn的通项公式为bn2n.(2)设数列a2nbn的前n项和为Tn,由a2n6n2,bn2n,有Tn 4210221623(6n2)2n,2Tn42210231624(6n8)2n(6n2)2n1,上述两式相减,得Tn4262262362n(6n2)2n1,4(6n2)2n1(3n4)2n216.所以Tn(3n4)2n216.所以数列a2nbn的前n项和为(3n4)2n216.探究提高1.一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列bn的公比,然后作差求解.2.在写“Sn”与“qSn”的表达式时应特别注

9、意将两式“错项对齐”,以便下一步准确地写出“SnqSn”的表达式.【训练3】 (2018浙江卷)已知等比数列an的公比q1,且a3a4a528,a42是a3,a5的等差中项.数列bn满足b11,数列(bn1bn)an的前n项和为2n2n.(1)求q的值;(2)求数列bn的通项公式.解(1)由a42是a3,a5的等差中项得a3a52a44,所以a3a4a53a4428,解得a48.由a3a520得820,解得q2或q,因为q1,所以q2.(2)设cn(bn1bn)an,数列cn前n项和为Sn.由cn解得cn4n1.由(1)可知an2n1,所以bn1bn(4n1),故bnbn1(4n5),n2,b

10、nb1(bnbn1)(bn1bn2)(b3b2)(b2b1)(4n5)(4n9)73.设Tn3711(4n5),n2,则Tn37(4n9)(4n5),所以Tn344441(4n5)7(4n3),因此Tn14(4n3),n2,又b11,所以bn15(4n3),n2,又b11也适合上式,所以bn15(4n3)(nN*).【新题感悟】 (2019天津卷)设an是等差数列,bn是等比数列.已知a14,b16,b22a22,b32a34.(1)求an和bn的通项公式;(2)设数列cn满足c11,cn其中kN*.求数列a2n(c2n1)的通项公式;求1aici(nN*).解(1)设等差数列an的公差为d,

11、等比数列bn的公比为q.依题意得解得故an4(n1)33n1,bn62n132n.所以an的通项公式为an3n1,bn的通项公式为bn32n.(2)a2n(c2n1)a2n(bn1)(32n1)(32n1)94n1.所以数列a2n(c2n1)的通项公式为a2n(c2n1)94n1.1aiciaiai(ci1)aia2i(c2i1) (94i1)(322n152n1)9n2722n152n1n12(nN*).一、填空题1.已知数列1,3,5,7,则其前n项和Sn为_.解析an(2n1),Snn21.答案n212.(2019如皋市高三模拟)已知数列an的前n项和为Sn,a11,且满足Snan1,则

12、数列Sn的前10项的和为_.解析由Snan1,得Sn1an(n2).两式相减得anan1an,an12an(n2),又a2S1a11,anSn2n1,则数列Sn的前10项的和为1 023.答案1 0233.若数列an是首项为a13,公比q1的等比数列,Sn是其前n项和,且a5是4a1与2a3的等差中项,则S19_.解析由题意得2a54a12a3,所以6q4126q2,即(q2)2q220,解得q21(舍去负值),又因为q1,所以q1,所以S1919a157.答案574.等差数列an的前n项和为Sn,a33,S410,则 _.解析设an首项为a1,公差为d,则由得Sn, 22.答案5.(2019

13、无锡模拟)数列an满足anan1(nN*),且a11,Sn是数列an的前n项和,则S21_.解析由anan1an1an2,an2an,则a1a3a5a21,a2a4a6a20,S21a1(a2a3)(a4a5)(a20a21)1106.答案66.在等差数列an中,a10,a10a110,a10a110可知d0,a110,故q2.由a12a25得a12a1q5,所以a11,故数列an的通项公式为an2n1.(2)由(1)及bn1bnan得bn1bn2n1,故b2b120,b3b221,bnbn12n2(n2),以上n1个等式相加得bnb11212n22n11,又b12,所以bn2n11(n2).

14、又当n1时,b12也适合上式,所以bn2n11.(3)cn,所以Tnc1c2cn.10.(2017山东卷)已知an是各项均为正数的等比数列,且a1a26,a1a2a3.(1)求数列an的通项公式;(2)若bn为各项非零的等差数列,其前n项和为Sn,且S2n1bnbn1,求数列的前n项和Tn.解(1)设数列an的公比为q,由题意知a1(1q)6,aqa1q2,又an0,解得a12,q2,所以an2n.(2)由题意知S2n1(2n1)bn1,又S2n1bnbn1,bn10,所以bn2n1.令cn,则cn,因此Tnc1c2cn,Tn,两式相减得Tn,所以Tn5.11.(2018天津卷)设an是等差数

15、列,其前n项和为Sn(nN*);bn是等比数列,公比大于0,其前n项和为Tn(nN*).已知b11,b3b22,b4a3a5,b5a42a6.(1)求Sn和Tn;(2)若Sn(T1T2Tn)an4bn,求正整数n的值.解(1)设等比数列bn的公比为q(q0).由b11,b3b22,可得q2q20.因为q0,可得q2,故bn2n1.所以Tn2n1.设等差数列an的公差为d.由b4a3a5,可得a13d4.由b5a42a6,可得3a113d16,从而a11,d1,故ann.所以Sn.(2)由(1),有T1T2Tn(21222n)nn2n1n2.由Sn(T1T2Tn)an4bn可得2n1n2n2n1,整理得n23n40,解得n1(舍),或n4.所以n的值为4.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3