ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.36MB ,
资源ID:1274222      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1274222-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学讲义100微专题078定值问题.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

高中数学讲义100微专题078定值问题.doc

1、微专题78 圆锥曲线中的定值问题一、基础知识: 所谓定值问题,是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值。1、常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数。2、定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向。(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间的关

2、系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算二、典型例题: 例1:已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点,双曲线的实轴为,为双曲线上一点(不同于),直线分别于直线交于两点(1)求双曲线的方程(2)试判断是否为定值,若为定值,求出该值;若不为定值,请说明理由解:(1)由可得,且焦点在轴上所以设双曲线方程为:,则渐近线方程为 由解得:双曲线方程为(2)由(1)可得:,设设,联立方程解得:同理:设,联立方程可得:下面考虑计算的值 在双曲线上 所以为定值例2:已知椭圆的离心率为,且过点(1)求椭圆方程(2)设不过原点的直线,与该椭圆交于两点,直线的斜率依次为,且

3、满足,试问:当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由解:(1)由可得:椭圆方程为代入可得:解得: 椭圆方程为(2)设,联立方程可得:消去可得:,整理可得:依题意可知:即 由方程可得:代入可得:,整理可得:可知为定值,与的取值无关例3:已知椭圆经过点,动点(1)求椭圆标准方程(2)设为椭圆的右焦点,过作的垂线与以为直径的圆交于点,求证:的长为定值,并求出这个定值解:(1)由可得: 椭圆方程可转化为:,将代入椭圆方程可得:,解得: 椭圆方程为 (2)由(1)可得: 思路一:通过圆的性质可得,而(设垂足为),由双垂直可想到射影定理,从而,即可判定为定值,设与相交于则

4、解得: 为圆的直径 由射影定理可得: 思路二:本题也可从坐标入手,设,则只需证明为定值即可,通过条件寻找关系,一方面:,可得;另一方面由点在圆上,可求出圆的方程,从而,展开后即可得到为定值解:设,则 的中点坐标为, 以为直径的圆方程为: 代入,可得: 即 例4:已知椭圆的离心率为,半焦距为,且,经过椭圆的左焦点,斜率为的直线与椭圆交于两点,为坐标原点(1)求椭圆的方程(2)设,延长分别与椭圆交于两点,直线的斜率为,求证:为定值解:(1),设 由可得: (2)由(1)可得 ,设 可得: 联立方程 同理,直线与椭圆交点的坐标为 设 ,代入可得: 小炼有话说:本题中注意的变形:可通过直线方程用表示,

5、代入后即可得到关于的表达式例5:已知椭圆的右焦点为,且点在椭圆上,为坐标原点(1)求椭圆的标准方程(2)过椭圆上异于其顶点的任一点,作圆的切线,切点分别为(不在坐标轴上),若直线的横纵截距分别为,求证:为定值解:(1)依可知 椭圆方程为代入解得: 椭圆方程为 (2)思路:由(1)可得:,可设,由题意可知为过作圆切线所产生的切点弦,所以,从而可得,所以,由椭圆方程可得,从而为定值解:由(1)可得:设 可知是过作圆切线所产生的切点弦设,由是切点可得: ,代入:,即 ,同理可知对于,有因为在圆上 为直线上的点因为两点唯一确定一条直线,即 由截距式可知 在椭圆上 即为定值小炼有话说:(1)本题定值是通

6、过整体代入的手段,即抓住最后的特点整体消去所得,所以在处理定值问题时,涉及的变量个数可以多,但是要有一定的条件保证能够消去。(2)本题求直线方程的过程即为切点弦公式证明的过程,此时抓住两点所在方程“同构”的特点,从而确定直线方程注:切点弦方程:过圆外一点作圆的切线,切点为,则切点弦的方程为:例6:如图,在平面直角坐标系中,已知椭圆,设为椭圆上任意一点。过原点作圆的两条切线,分别交椭圆于(1)若直线相互垂直,求的方程(2)若直线斜率存在,并记为,求证:是一个定值(3)试问是否为定值?若是,求出该值;若不是,请说明理由解:(1)由可得 ,即联立方程:或或或的方程为:或或或(2)思路:可设直线,均与

7、圆相切,可得(其中)化简可得:,可发现均满足此方程,从而为的两根。则,再利用椭圆方程消元即可得到定值解:设与相切化简可得:对于,同理可得:为的两根 (3)思路:设,由第(2)问所得结论,可以考虑通过联立直线与椭圆方程将坐标分别用进行表示,再判断是否为定值解:当不在坐标轴上时,设同理可得: 若在坐标轴上(不妨设在轴)上,则综上所述,为定值例7:已知椭圆,称圆心在原点,半径为的圆为椭圆的“准圆”,若椭圆的一个焦点为,其短轴上的一个端点到的距离为(1)求椭圆的方程及其“准圆”方程(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点 当点为“准圆”与轴正半轴的交点时,求直线的方程并证明 求

8、证:线段的长为定值解:(1)依题意可得:, (2) 由(1)可得,设切线方程为:联立方程:消去可得:整理可得:解得:所以 设 则,消去可得:整理可得:整理后可得:同理,对于设切线的斜率为,则有: 在“准圆”上 所以 为“准圆”的直径为定值,例8:已知点在椭圆上,椭圆的左焦点为(1)求椭圆的方程(2)直线过点交椭圆于两点,是椭圆经过原点的弦,且,问是否存在正数,使得为定值?若存在,请求出的值;若不存在,请说明理由。解:(1)由左焦点可得,由,代入可得:解得:(2)思路:由所求可联想到弦长公式,除了所求变量,直线的另一核心要素为斜率(假设存在),通过可联想到弦长公式,所以分别将直线的方程与椭圆方程

9、联立,进而为关于的表达式,若为常数,则意味着与的取值无关,进而确定的值 设直线,,联立方程: 设 ,则 所以若是个常数,也为的形式,即 此时,当直线斜率不存在时,可得符合题意 小炼有话说:本题在判断 的取值也可通过精确的计算得到,通过分式变形化为只有一项含的表达式:,若的值与无关,则 例9:如图,已知椭圆的离心率为 ,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点源:Z_xx_k.Com(1)求椭圆的方程;(2)求的最小值,并求此时圆的方程 来源:学科网来源:Z|xx|k.Com(3)设点是椭圆上异于的任意一点,且直线分别与轴交于点,为坐标原点,求证:为定值 解(1)圆的圆心 椭圆方程为: (2)

10、由圆与椭圆关于轴对称可得:关于轴对称设,则,且有由可得: 因为在椭圆上(非长轴顶点) 时,将代入可得 即,代入到圆方程可得: (3)思路:依图可知所可翻译为坐标运算即,且 分别为直线与轴的交点,可设出,从而结合和计算出的方程,从而可用进行表示,再根据椭圆方程进行消元即可。解:设,由可得: 的方程为:令,可解得: 同理可解得与轴的交点的横坐标 所以 因为,均在椭圆上,代入到可得:所以,即为定值例10:如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于和,且满足,其中为常数且,当点恰为椭圆右顶点时,对应的 (1)求椭圆的方程(2)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由解:(1)由可得: 若为右顶点,则 ,设 由可得: 代入可得,代入椭圆方程可得:解得 椭圆方程为: (2)解:设 由,可得: ,因为在椭圆上所以有:,代入并整理可得: 整理可得: 同理可得:对于,则有 ,即为定值

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3