ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:263.50KB ,
资源ID:127387      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-127387-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(人教B版高中数学选修2-2 1-4-2 微积分基本定理 教案 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

人教B版高中数学选修2-2 1-4-2 微积分基本定理 教案 .doc

1、1.4.2 微积分基本定理一、教学目标1知识和技能目标(1)掌握微积分基本定理;(2)会熟练地用微积分基本定理计算一些有关微积分的问题2过程和方法目标从局部到整体,从具体到一般的思想,利用导数的几何意义和定积分的概念,通过寻求导数和定积分之间的内在联系,得到微积分基本定理,进一步得出积分定理3情感态度和价值观目标通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力二、教学重点.难点重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。难点:了解微积分基本定理的含义。三、学情分析微积分基本定理给微积分学的发展带来

2、了深远的影响,是微积分学中最重要最辉煌的成果。本节课是学生学习了导数和定积分的概念后的学习内容,它不仅揭示了导数和定积分之间的内在联系,同时为计算定积分提供了一种有效方法,为后面的学习特别是高等数学的学习奠定了基础。因此它在学生学习中起到了承上启下的作用,在教材中处于极其重要的地位。四、教学方法探析归纳,讲练结合五、教学过程我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t时物体所在位置为S(t),速度为v(t)(),则物体在时间间隔内

3、经过的路程可用速度函数表示为。另一方面,这段路程还可以通过位置函数S(t)在上的增量来表达,即 =而。对于一般函数,设,是否也有若上式成立,我们就找到了用的原函数(即满足)的数值差来计算在上的定积分的方法。注:1:定理 如果函数是上的连续函数的任意一个原函数,则证明:因为=与都是的原函数,故-=C()其中C为某一常数。令得-=C,且=0即有C=,故=+ =-=令,有此处并不要求学生理解证明的过程为了方便起见,还常用表示,即该式称之为微积分基本公式或牛顿莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定

4、积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。知识应用,深化理解例1计算下列定积分:(1); (2)。解:(1)因为,所以。(2)因为,所以。例2计算下列定积分:。由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论。解:因为,所以,.可以发现,定积分的值可能取正值也可能取负值,还可能是0: ( l )当对应的曲边梯形位于 x 轴上方时(图1.6一3 ) ,定积分的值取正值,且等于曲边梯形的面积;图1 . 6 一

5、 3 ( 2 )(2)当对应的曲边梯形位于 x 轴下方时(图 1 . 6 一 4 ) ,定积分的值取负值,且等于曲边梯形的面积的相反数; ( 3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0(图 1 . 6 一 5 ) ,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积例3汽车以每小时32公里速度行驶,到某处需要减速停车。设汽车以等减速度=1.8米/秒2刹车,问从开始刹车到停车,汽车走了多少距离?解:首先要求出从刹车开始到停车经过了多少时间。当t=0时,汽车速度=32公里/小时=米/秒8.88米/秒,刹车后汽车减速行驶,其速度为当汽

6、车停住时,速度,故从解得秒于是在这段时间内,汽车所走过的距离是=米,即在刹车后,汽车需走过21.90米才能停住.微积分基本定理揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效方法微积分基本定理是微积分学中最重要的定理,它使微积分学蓬勃发展起来,成为一门影响深远的学科,可以毫不夸张地说,微积分基本定理是微积分中最重要、最辉煌的成果六、当堂检测1.的值是( )A.0 B. C.2 D.42.下列式子正确的是( )A. B. C. D.3.函数的导数是( )A. B. C. D.4.已知函数,若成立,则= ;5.曲线与坐标轴所围成的面积是( )A.2 B.3 C. D.46. 在曲线上某一点A处作一切线使之于曲线及轴所围成的面积为,试求:(1)切点A的坐标;(2)过切点A的切线方程.设计意图:目的是让学生学会用数学的眼光去看待物理模型,建立各学科之间的联系,更深刻地把握事物变化的规律.七、课堂小结1.知识建构2.能力提高3.课堂体验八、课时练与测九、教学反思

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3