1、2.1.2空间两条直线的位置关系教学目的:1.会判断两条直线的位置关系,学会用图形语言、符号语言表示三种位置关系.2.理解公理四,并能运用公理四证明线线平行.3掌握空间两直线的位置关系,掌握异面直线的概念,会用反证法和异面直线的判定定理证明两直线异面;4. 掌握异面直线所成角的概念及异面直线垂直的概念,能求出一些较特殊的异面直线所成的角教学重点:公理4及等角定理的运用异面直线所成的角.教学难点:公理4及等角定理的运用异面直线所成的角.教学过程:一、复习引入: 把一张纸对折几次,为什么它们的折痕平行?(每个矩形的竖边是互相平行的,再应用平行公理,可得知它们的折痕是互相平行的)二、讲解新课:1空间
2、两直线的位置关系(1)相交有且只有一个公共点;(2)平行在同一平面内,没有公共点;(3)异面不在任何一个平面内,没有公共点;2平行直线(1)公理4 :平行于同一条直线的两条直线互相平行推理模式:说明:公理4表述的性质叫做空间平行线的传递性;(2)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等分析:在平面内,这个结论我们已经证明成立了在空间中,这个结论是否成立,还需通过证明要证明两个角相等,常用的方法有:证明两个三角形全等或相似,则对应角相等;证明两直线平行,则同位角、内错角相等;证明平行四边形,则它的对角相等,等等根据题意,我们只能证明两个三角形全等或相似,为
3、此需要构造两个三角形,这也是本题证明的关键所在已知:和的边,并且方向相同,求证:证明:在和的两边分别截取,是平行四边形,同理,即是平行四边形,所以,(4)等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等. 指出:等角定理及其推论,说明了空间角通过任意平行移动具有保值性,因而成为异面直线所成角的基础.3.空间两条异面直线的画法4异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线推理模式:与是异面直线证明 :(反证法)假设 直线与共面,点和确定的平面为,直线与共面于,与矛盾,所以,与是异面直线5异面直线所成的角:已
4、知两条异面直线,经过空间任一点作直线,所成的角的大小与点的选择无关,把所成的锐角(或直角)叫异面直线所成的角(或夹角)为了简便,点通常取在异面直线的一条上异面直线所成的角的范围:6异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直两条异面直线 垂直,记作7求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2)找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成的角即为所求三、讲解范例:例1 已知四边形ABCD是空间四边形,E、H分别是AB、AD的中点,F、G分别是边CB、CD上的点,且,求证:四边形EFGH是梯形分析:梯形就是一
5、组对边平行且不相等的四边形考虑哪组对边会平行呢?为什么?(平行公理)证明对边不相等可以利用平行线分线段成比例证明:如图,连接BDEH是ABD的中位线,EH/BD,EH=BD.又在BCD中,FG/BD,FG=BD.根据公理4,EH/FG又FGEH,四边形EFGH的一组对边平行但不相等例2 如图,是平面外的一点分别是的重心,求证:证明:连结分别交于,连结,分别是的重心,分别是的中点,又,由公理4知例3 如图,已知不共面的直线相交于点,是直线上的两点,分别是上的一点求证:和是异面直线证(法一):假设和不是异面直线,则与在同一平面内,设为,又,同理,共面于,与已知不共面相矛盾,所以,和是异面直线(法二
6、):,直线确定一平面设为,且,又不共面,所以,与为异面直线例4 正方体中那些棱所在的直线与直线是异面直线?求与夹角的度数那些棱所在的直线与直线垂直?解:(1)由异面直线的判定方法可知,与直线成异面直线的有直线,(2)由,可知等于异面直线与的夹角,所以异面直线与的夹角为(3)直线与直线都垂直例5 两条异面直线 的公垂线指的是 ( )(A)和两条异面直线都垂直的直线(B)和两条异面直线都垂直相交的直线(C)和两条异面直线都垂直相交且夹在两交点之间的线段(D)和两条异面直线都垂直的所有直线翰林汇答案:B例6 在棱长为a的正方体中,与AD成异面直线且距离等于a的棱共有 ( ) (A)2条 (B)3条
7、(C)4条 (D)5条答案:BB1, CC1, A1B1, C1D1共四条故选C.例7若a、b是两条异面直线,则下列命题中,正确的是 ( ) (A)与a、b都垂直的直线只有一条 (B)a与b的公垂线只有一条 (C)a与b的公垂线有无数条 (D)a与b的公垂线的长就是a、b两异面直线的距离翰林汇答案:B例8已知正方体ABCDA1B1C1D1的棱长为a,则棱A1B1所在直线与面对角线BC1所在直线间的距离是 ( ) (A) (B)a (C) (D)翰林汇答案:A四、课堂练习: 1 判断(1)平行于同一直线的两条直线平行 . ( ) (2)垂直于同一直线的两条直线平行 . ( ) (3)过直线外一点
8、,有且只有一条直线与已知直线平行 . ( ) (4)与已知直线平行且距离等于定长的直线只有两条. ( ) (5)若一个角的两边分别与另一个角的两边平行,那么这两个角相等( ) (6)若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等. ( )答案:(1)(2)(3)(4)(5)(6)(7)2选择题 (1)“a,b是异面直线”是指 ab=且a不平行于b; a 平面a,b 平面b且ab= a 平面a,b 平面a 不存在平面a,能使a a且b a成立上述结论中,正确的是( ) (A)(B)(C)(D)(2)长方体的一条对角线与长方体的棱所组成的异面直线有( ) (A)2对
9、(B)3对(C)6对(D)12对(3)两条直线a,b分别和异面直线c,d都相交,则直线a,b的位置关系是( ) (A)一定是异面直线(B)一定是相交直线 (C)可能是平行直线(D)可能是异面直线,也可能是相交直线(4)一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是( ) (A)平行(B)相交(C)异面(D)相交或异面答案:(1)C(2)C(3)A(4)D3两条直线互相垂直,它们一定相交吗? 答:不一定,还可能异面4.垂直于同一直线的两条直线,有几种位置关系?答:三种:相交,平行,异面5画两个相交平面,在这两个平面内各画一条直线使它们成为(1)平行直线;(2)相交直线;(3)异面直
10、线解:6选择题 (1)分别在两个平面内的两条直线间的位置关系是( ) (A)异面(B)平行(C)相交(D)以上都有可能 (2)异面直线a,b满足aa,bb,ab=,则与a,b的位置关系一定是( ) (A)至多与a,b中的一条相交(B)至少与a,b中的一条相交 (C)与a,b都相交 (D)至少与a,b中的一条平行(3)两异面直线所成的角的范围是() (A)(0,90)(B)0,90)(C)(0,90(D)0,90答案(1)D(2)B(3):C7判断下列命题的真假,真的打“”,假的打“” (1)两条直线和第三条直线成等角,则这两条直线平行 ( ) (2)和两条异面直线都垂直的直线是这两条异面直线的公垂线 ( ) (3)平行移动两条异面直线中的任一条,它们所成的角不变 ( ) (4)四边相等且四个角也相等的四边形是正方形 ( )答案:,五、小结 :这节课我们学习了两条直线的位置关系(平行、相交、异面),平行公理和等角定理及其推论异面直线的概念、判断及异面直线夹角的概念;证明两直线异面的一般方法是“反证法”或“判定定理”;求异面直线的夹角的一般步骤是:“作证算答”