收藏 分享(赏)

2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt

上传人:高**** 文档编号:1269032 上传时间:2024-06-06 格式:PPT 页数:19 大小:3.81MB
下载 相关 举报
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第1页
第1页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第2页
第2页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第3页
第3页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第4页
第4页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第5页
第5页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第6页
第6页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第7页
第7页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第8页
第8页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第9页
第9页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第10页
第10页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第11页
第11页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第12页
第12页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第13页
第13页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第14页
第14页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第15页
第15页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第16页
第16页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第17页
第17页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第18页
第18页 / 共19页
2020-2021学年数学人教A版必修4教学课件:2-2-1 向量加法运算及其几何意义 (19 张) .ppt_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
资源描述

1、向量加法运算及其几何意义向量加法运算及其几何意义1、什么叫向量?一般用什么表示?3、平行向量4、什么叫相等向量?既有大小又有方向的量叫向量,一般用有向线段表示。长度相等且方向相同的向量叫相等向量。2、向量的模、零向量、单位向量向量的大小(长度)称为向量的模、长度为0的向量叫零向量,方向是任意的长度为1个单位长度的向量,叫单位向量.方向相同或相反的非零向量叫平行向量,与任意向量平行。复习引入:(共线向量)判断下列命题是否正确.(1)两个有共同起点的相等向量,其终点可能不同.()(2)()(3)若非零向量共线,则()(4)四边形ABCD是平行四边形,则=()(5)向量平行,则的方向相同或相反()(

2、6)共线的向量,若起点不同,则终点一定不同。()XXX两个实数可以相加,从而给数赋予了新的内涵.如果向量仅停留在概念的层面上,那是没有多大意义的.我们希望两个向量也能相加,拓展向量的数学意义,提升向量的理论价值,这就需要建立相关的原理和法则.由于大陆和台湾没有直航,因此2006年春节探亲,乘飞机要先从台北到香港,再从香港到上海,则飞机的位移是多少?上海台北香港上海台北香港CAB1、位移上述分析表明,位移的合成可看作是向量的加法。OFEGEGABEOCF1F2FGOCF1F2F为 F1与F2的合力它们之间有什么关系上述分析表明,力的合成也可看作是向量的加法。作法(1)在平面内任取一点OAB这种作

3、法叫做向量加法的三角形法则还有没有其他的做法?向量加法的三角形法则位移的合成可以看作向量加法三角形法 则 的 物 理 模 型oABC作法(1)在平面内任取一点O向量加法的平行四边形法则这种作法叫做向量加法的平行四边形法则力的合成可以看作向量加法的平行四边形法则的物理模型o(3)作平行四边形OACB(4)已知向量,分别用向量加法的三角形法则与向量加法的平行四边形法则作出+ABC(1)同向(2)反向规定:ABC结论:1、三角形法则:第二个向量的起点是第一个向量的终点,和向量是第一个向量的起点指向第二向量的终点。2、平行四边法则:以两个有共同起点的向量为邻边作平行四边形,和向量是以这个共同起点为对角

4、线对应的向量。1、共线(1)向同(2)反向判断的大小判断的大小2、不共线oABBCDAa+b+ca+bb+cabcBCDAbabaa+b 数的加法满足交换律与结合律,即对任意a,bR,有a+b=b+a,(a+b)+c=a+(b+c)任意向量a,b的加法是否也满足交换律与结合律?是否成立?从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行例1、化简:例2.长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图所示,一艘船从长江两岸A点出发,以的速度和垂直于对岸的方向行驶,同时,江水的速度为.(1)试用向量表示江水的速度,船速以及船实际航行速度(保留两个有效数字);(2)求船实际航行速度的大小与方向(用与江水速度速间的夹角表示,精确到度)ABCDABDC解:如图,设表示船速,表示水的流速,以AB,AD为邻边作ABCD,在中,因为由计算器得答:船实际航行速度为,方向与流速间的夹角为12本节课学习的数学知识本节课学习的数学方法特殊与一般,归纳与类比,数形结合,几何作图,向量加法的实际应用回顾与小结4.向量加法满足交换律与结合律2.向量加法的平行四边形法则1.向量加法三角形法则3、的大小共线同向不共线根据图示填空:(1)a+d=_(2)c+b=_ACDBOabcdDCBAEgefdcab根据图示填空:(1)a+b=_(2)c+d=_(3)a+b+d=_(4)c+d+e=_cffg

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3