ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:702.50KB ,
资源ID:1267444      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1267444-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(浙江省诸暨市牌头中学高三数学概率统计、分布列、均值与方差补充卷.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

浙江省诸暨市牌头中学高三数学概率统计、分布列、均值与方差补充卷.doc

1、2014.111、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为,若低于60分的人数是15人,则该班的学生人数是()A B C D2、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, 840随机编号, 则抽取的42人中, 编号落入区间的人数为 ()A11 B12 C13 D143、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A抽签法B随机数法C系统抽样法D分层抽样法 4、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测

2、试中的成绩(单位:分)甲组乙组90921587424已知甲组数据的中位数为,乙组数据的平均数为,则的值分别为()ABCD5、已知离散型随机变量的分布列为则的数学期望() A B C D6、如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为,则的均值为()AB C D7、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_(结果用最简分数表示)8、抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲87919

3、08993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .9、从个正整数中任意取出两个不同的数,若取出的两数之和等于的概率为,则_.10、设非零常数d是等差数列的公差,随机变量等可能地取值,则方差11、为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为_.12、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中

4、将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?13、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). () 求取出的4张卡片中, 含有编号为3的卡片的概率. () 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望. 14、甲、乙、丙三人进行羽毛球练习

5、赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为各局比赛的结果相互独立,第局甲当裁判.(I)求第局甲当裁判的概率;(II)表示前局中乙当裁判的次数,求的数学期望.15、某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有个红球与个白球的袋中任意摸出个球,再从装有个蓝球与个白球的袋中任意摸出个球,根据摸出个球中红球与蓝球的个数,设一.二.三等奖如下:奖级摸出红.蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸

6、奖者在一次摸奖中获奖金额的分布列与期望.16、口袋内有()个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是,且.若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于.()求和;()不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望.17、选聘高校毕业生到村任职,是党中央作出的一项重大决策,这对培养社会主义新农村建设带头人,引导高校毕业生面向基层就业创业具有重大意义.为响应国家号召,某大学决定从符合条件的名(其中男生名,女生名)报名大学生中选择人到某村参加村主任应聘考

7、核.(1)设所选人中女生人数为,求的分布列及数学期望;(2)在男生甲被选中的情况下,求女生乙也被选中的概率.18设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分。(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,.求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求概率与统计分布列、均值与方差(参考答案)1、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为,若低于60分的人数是15人,则该班的学生人数是()A B C D【答案】

8、B 2、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, 840随机编号, 则抽取的42人中,编号落入区间的人数为 ()A11 B12 C13 D14【答案】B3、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A抽签法B随机数法C系统抽样法D分层抽样法 【答案】D 4、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)甲组乙组90921587424已知甲组数据的中位数为,乙组数据的平均数为,则的值分别为()ABCD【答案】C

9、 5、已知离散型随机变量的分布列为则的数学期望() A B C D【答案】A6、如图,将一个各面都涂了油漆的正方体,切割成125个同样大小的小正方体.经过搅拌后,从中随机取出一个小正方体,记它的涂油漆面数为,则的均值为()AB C D【答案】B 7、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_(结果用最简分数表示)【答案】. 8、抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为

10、.【答案】2 9、从个正整数中任意取出两个不同的数,若取出的两数之和等于的概率为,则_.【答案】8 10、设非零常数d是等差数列的公差,随机变量等可能地取值,则方差【答案】. 11、为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为_.【答案】10 12、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑

11、换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】解:()由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”, , 这两人的累计得分的概率为. ()设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为 由已知:, , , 他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.

12、13、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). () 求取出的4张卡片中, 含有编号为3的卡片的概率. () 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望. 【答案】 14、甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为各局比赛的结果相互独立,第局甲当裁判.(I)求第局甲当裁判的概率;(II)表示前局中乙当裁判的次数,求的数学期望.【

13、答案】 15、某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有个红球与个白球的袋中任意摸出个球,再从装有个蓝球与个白球的袋中任意摸出个球,根据摸出个球中红球与蓝球的个数,设一.二.三等奖如下:奖级摸出红.蓝球个数获奖金额一等奖3红1蓝200元二等奖3红0蓝50元三等奖2红1蓝10元其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额的分布列与期望.【答案】 16、口袋内有()个大小相同的球,其中有3个红球和个白球.已知从口袋中随机取出一个球是红球的概率是,且.若有放回地从口袋中连续地取四次球(每次只取一个球)

14、,在四次取球中恰好取到两次红球的概率大于.()求和;()不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望.【答案】 17、选聘高校毕业生到村任职,是党中央作出的一项重大决策,这对培养社会主义新农村建设带头人,引导高校毕业生面向基层就业创业具有重大意义.为响应国家号召,某大学决定从符合条件的名(其中男生名,女生名)报名大学生中选择人到某村参加村主任应聘考核.(1)设所选人中女生人数为,求的分布列及数学期望;(2)在男生甲被选中的情况下,求女生乙也被选中的概率.【答案】【解析】():的所有可能取值为0,1,2. 依题意得:,. 的分布列

15、为012 . ():设“男生甲被选中”为事件,“女生乙被选中”为事件, 则, , . 故在男生甲被选中的情况下,女生乙也被选中的概率为. 18设袋子中装有个红球,个黄球,个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分。(1)当时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,.求分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量为取出此球所得分数.若,求19解:()由已知得到:当两次摸到的球分别是红红时,此时;当两次摸到的球分别是黄黄,红蓝,蓝红时,此时;当两次摸到的球分别是红黄,黄红时,此时;当两次摸到的球分别是黄蓝,蓝黄时,此时;当两次摸到的球分别是蓝蓝时,此时;所以的分布列是:23456P()由已知得到:有三种取值即1,2,3,所以的分布列是:123P所以:,所以。

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3