1、数列0714、数列的前项和记为,且满足(1)求数列的通项公式;(2)求和:;(3)设有项的数列是连续的正整数数列,并且满足:试问数列最多有几项?并求这些项的和.【答案】解:(1)由得,相减得,即又,得,数列是以1为首项2为公比的等比数列,5分(2)由(1)知10分(3)由已知得又是连续的正整数数列,上式化为又,消得,由于,时,的最大值为9.此时数列的所有项的和为16分15、已知数列an满足,(其中0且1,nN*),为数列an的前项和 (1) 若,求的值;(2) 求数列an的通项公式;(3) 当时,数列an中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由【答案】(1) 令,
2、得到,令,得到。2分由,计算得4分(2) 由题意,可得: ,所以有,又,5分得到:,故数列从第二项起是等比数列。7分又因为,所以n2时,8分所以数列an的通项10分(3) 因为 所以11分假设数列an中存在三项am、ak、ap成等差数列,不防设mkp2,因为当n2时,数列an单调递增,所以2ak=am+ap即:2()4k2 = 4m2 + 4p2,化简得:24k - p = 4mp+1即22k2p+1=22m2p+1,若此式成立,必有:2m2p=0且2k2p+1=1,故有:m=p=k,和题设矛盾14分假设存在成等差数列的三项中包含a1时,不妨设m=1,kp2且akap,所以2ap = a1+ak ,2()4p2 = + ()4k2,所以24p2= 2+4k2,即22p4 = 22k5 1因为k p 2,所以当且仅当k=3且p=2时成立16分因此,数列an中存在a1、a2、a3或a3、a2、a1成等差数列18分