ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:216.50KB ,
资源ID:125619      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-125619-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新设计》2016届 数学一轮(文科) 浙江专用 课时作业 探究课4 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新设计》2016届 数学一轮(文科) 浙江专用 课时作业 探究课4 WORD版含答案.doc

1、探究课四 立体几何问题中的热点题型(建议用时:80分钟)1如图,DC平面ABC,EBDC,ACBCEB2DC2,ACB120,P,Q分别为AE,AB的中点(1)证明:PQ平面ACD;(2)求AD与平面ABE所成角的正弦值(1)证明因为P,Q分别为AE,AB的中点,所以PQEB.又DCEB,因此PQDC,又DC平面ACD,PQ平面ACD,所以PQ平面ACD.(2)解如图,连接CQ,DP.因为Q为AB的中点,且ACBC,所以CQAB.因为DC平面ABC,EBDC,所以EB平面ABC,因此CQEB,又EBABB,故CQ平面ABE.由(1)有PQDC,又PQEBDC,所以四边形CQPD为平行四边形,故

2、DPCQ,因此DP平面ABE,DAP为AD和平面ABE所成的角在RtDPA中,AD,DP1,sinDAP.因此AD与平面ABE所成角的正弦值为.2(2014新课标全国卷)如图,在四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点(1)证明:PB平面AEC;(2)设AP1,AD,三棱锥PABD的体积V,求A到平面PBC的距离(1)证明设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EOPB.又因为EO平面AEC,PB平面AEC,所以PB平面AEC.(2)解VPAABADAB.又V,可得AB.作AHPB交PB于H.由题设知BC平面

3、PAB,所以BCAH,故AH平面PBC.在RtPAB中,由勾股定理可得PB,所以AH,所以A到平面PBC的距离为.3如图,直角梯形ABCD中,ABCD,BCD90,BCCD,ADBD,EC底面ABCD,FD底面ABCD,且有ECFD2.(1)求证:ADBF;(2)若线段EC的中点为M,求直线AM与平面ABEF所成角的正弦值(1)证明BCDC,且BCCD,BD2且CBDBDC45,又ABDC,可知DBACDB45,ADBD,ADB是等腰三角形,DABDBA45,ADB90,即ADDB,FD底面ABCD于点D,AD平面ABCD,ADDF,又DFBDD,AD平面DBF,又BF平面DBF,ADBF.(

4、2)解过点M作MNBE于点N,连接AN、AM.又由ABBC,ABEC,AB平面BCE.ABMN,又ABBEB,MN平面ABEF.故MAN即为直线AM与平面ABEF所成角又由EMNEBC,可得MN,且AM,sin MAN.故直线AM与平面ABEF所成角的正弦值为.4如图,在平行四边形ABCD中,AB2BC,ABC120,E为线段AB的中点,将ADE沿直线DE翻折成ADE,使平面ADE平面BCDE,F为线段AC的中点(1)求证:BF平面ADE;(2)设M为线段DE的中点,求直线FM与平面ADE所成角的余弦值(1)证明取AD的中点G,连接GF,GE,由条件易知FGCD,FGCD,BECD,BECD,

5、所以FGBE,FGBE,故四边形BEGF为平行四边形,所以BFEG.因为EG平面ADE,BF平面ADE,所以BF平面ADE.(2)解在平行四边形ABCD中,设BCa,则ABCD2a,ADAEEBa,连接CE,根据ABC120,在BCE中,可得CEa,在ADE中,可得DEa,在CDE中,因为CD2CE2DE2,所以CEDE,在正三角形ADE中,M为DE中点,所以AMDE.由平面ADE平面BCD,可知AM平面BCD,AMCE.所以CE平面ADE.取AE的中点N,连接NM,NF,所以NFCE.所以NF平面ADE,则FMN为直线FM与平面ADE所成角在RtFMN中,NFa,MNa,FMa,则cosFM

6、N,所以直线FM与平面ADE所成角的余弦值为.5.(2014江西卷)如图,在三棱柱ABCA1B1C1中,AA1BC,A1BBB1.(1)求证:A1CCC1;(2)若AB2,AC,BC,问AA1为何值时,三棱柱ABCA1B1C1体积最大,并求此最大值(1)证明由AA1BC知BB1BC,又BB1A1B,且BC平面BCA1,A1B平面BCA1,BCA1BB,故BB1平面BCA1,由A1C平面BCA1可得BB1A1C,又BB1CC1,所以A1CCC1.(2)解法一设AA1x,在RtA1BB1中,A1B.同理,A1C.在A1BC中,cos BA1C,sin BA1C,所以SA1BCA1BA1Csin B

7、A1C.从而三棱柱ABCA1B1C1的体积VSA1BCAA1.因为x,故当x,即AA1时,体积V取到最大值.法二如图,过A1作BC的垂线,垂足为D,连接AD.由于AA1BC,A1DBC,故BC平面AA1D,BCAD,又BAC90,所以SABCADBCABAC,得AD.设AA1x,在RtAA1D中,A1D,SA1BCA1DBC.从而三棱柱ABCA1B1C1的体积VSA1BCAA1.因为x,故当x,即AA1时,体积V取到最大值.6.如图,已知四边形ABCD是正方形,EA平面ABCD,PDEA,ADPD2EA2,F,G,H分别为BP,BE,PC的中点(1)求证:FG平面PDE;(2)求证:平面FGH

8、平面ABE;(3)在线段PC上是否存在一点M,使PB平面EFM?若存在,求出线段PM的长;若不存在,请说明理由(1)证明因为F,G分别为PB,BE的中点,所以FGPE,又FG平面PDE,PE平面PDE,所以FG平面PDE.(2)证明因为EA平面ABCD,所以EACB.又CBAB,ABAEA,所以CB平面ABE.由已知F,H分别为线段PB,PC的中点,所以FHBC.则FH平面ABE.而FH平面FGH,所以平面FGH平面ABE.(3)解在线段PC上存在一点M,使PB平面EFM.证明如下:如图,在PC上取一点M,连接EF,EM,FM.在直角三角形AEB中,因为AE1,AB2,所以BE.在直角梯形EADP中,因为AE1,ADPD2,所以PE,所以PEBE.又F为PB的中点,所以EFPB.要使PB平面EFM,只需使PBFM.因为PD平面ABCD,所以PDCB,又CBCD,PDCDD,所以CB平面PCD,而PC平面PCD,所以CBPC.若PBFM,则PFMPCB,可得.由已知可求得PB2,PF,PC2,所以PM.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3