1、1.1.1棱柱、棱锥、棱台的结构特征一、学习目标:1、知识与技能:(1)能根据几何结构特征对空间物体进行分类。(2)会用语言概述棱柱、棱锥、棱台的结构特征。(3)会表示有关几何体以及柱、锥、台的分类。 2、过程与方法:(1)通过直观感受空间物体,概括出柱、锥、台的几何结构特征。(2)观察、讨论、归纳、概括所学的知识。 3、情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。(2)培养学生的空间想象能力和抽象概括能力。二、学习重点、难点:学习重点:感受大量空间实物及模型,概括出柱、锥、台的结构特征。学习难点:柱、锥、台的结构特征的概括。三
2、、使用说明及学法指导:1、先浏览教材,再逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。2、要求小班、重点班学生全部完成,平行班学生完成A、B类问题。3、A类是自主探究,B类是合作交流。四、知识链接: 平行四边形:矩形:正方体:五、学习过程:A问题1:什么是多面体、多面体的面、棱、顶点?A问题2:什么是旋转体、旋转体的轴?B问题3:什么是棱柱、锥、台?有何特征?如何表示?如何分类?C问题4;探究一下各种四棱柱之间有何关系?C问题5:质疑答辩,排难解惑1 有两个面互相平行,其余各面都是平行四边形的几何体是不是棱柱?(举反例说明)2 棱柱的任何两个平面都可以作为棱柱的底面吗?A例
3、1:如图,截面BCEF把长方体分割成两部分,这两部分是否是棱柱?ABCDA1B1C1D1EF B例2:一个三棱柱可以分成几个三棱锥?六、达标测试A1、下面没有对角线的一种几何体是 ( )A三棱柱 B四棱柱C五棱柱 D六棱柱A2、若一个平行六面体的四个侧面都是正方形,则这个平行六面体是 ( )A正方体 B正四棱锥 C长方体 D直平行六面体B3、棱长都是1的三棱锥的表面积为 ( )A B2 C3 D4B4、正六棱台的两底边长分别为1cm,2cm,高是1cm,它的侧面积为( )Acm2 Bcm2 Ccm2 D3cm2B5、若长方体的三个不同的面的面积分别为2,4,8,则它的体积为 ( )A2 B4 C8 D12C6、一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面 ( )A必须都是直角三角形 B至多只能有一个直角三角形C至多只能有两个直角三角形 D可能都是直角三角形A7、长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_.七、小结与反思: