1、第二章2.2第2课时A级基础巩固一、选择题1如果数列an是等差数列,则(B)Aa1a8a4a5Ba1a8a4a5Ca1a8a4a5Da1a8a4a5解析由等差数列的性质有a1a8a4a5.2如果等差数列an中,a3a4a512,那么a1a2a3a4a5a6a7(C)A14B21C28D35解析a3a4a53a412,a44,a1a2a3a4a5a6a77a428.3等差数列an中,a2a5a89,那么关于x的方程:x2(a4a6)x100(A)A无实根B有两个相等实根C有两个不等实根D不能确定有无实根解析由于a4a6a2a82a5,而3a59,a53,方程为x26x100,624100,d3.
2、则a11a12a133a123(a210d)105.6设公差为2的等差数列an,如果a1a4a7a9750,那么a3a6a9a99等于(D)A182B78C148 D82解析a3a6a9a99(a12d)(a42d)(a72d)(a972d)(a1a4a97)2d33502(2)3382.二、填空题7若lg2,lg(2x1),lg(2x3)成等差数列,则x_log25_.解析由题意得2lg(2x1)lg2lg(2x3),所以(2x1)22(2x3),即(2x5)(2x1)0,所以2x5,即xlog25.8中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为_5_.解析该
3、数列记作an,公差记作d,若共2m1项,则am11 010,a2m12 015,md1 005,a1am1md5;若共2m项,则amam121 0102 020,a2m2 015,又a1a2mamam1,a15.综上a15.三、解答题9已知数列an,an2n1,bna2n1.(1)求bn的通项公式;(2)数列bn是否为等差数列?说明理由解析(1)an2n1,bna2n1,bna2n12(2n1)14n3.(2)由bn4n3,知bn14(n1)34n7,bnbn1(4n3)(4n7)4,bn是首项b11,公差为4的等差数列10四个数成递增等差数列,中间两数的和为2,首末两项的积为8,求这四个数解
4、析设这四个数为a3d,ad,ad,a3d(公差为2d)依题意,得2a2,且(a3d)(a3d)8,即a1,a29d28,d21,d1或d1.又四个数成递增等差数列,所以d0,d1,故所求的四个数为2,0,2,4.B级素养提升一、选择题1已知数列是等差数列,且a32,a912,则a15(B)A10B30C40D20解析解法一:设数列的公差为d.a32,a912,6d,d,12d2.故a1530.解法二:由于数列是等差数列,故2,即22,故a1530.2在等差数列an中,若a4a6a8a10a12120,则a9a11的值为(C)A14B15C16D17解析由题意,得5a8120,a824,a9a1
5、1(a8d)(a83d)a816.3已知数列an满足a115,且3an13an2.若akak10,则正整数k(B)A24B23C22D21解析由3an13an2得an1an,所以数列an为首项a115,公差d的等差数列,所以an15(n1)n,则由akak10,ak10,a240,而a2a30,A错误;B举同样反例a12,a21,a34,a1a30,B错误;下面针对C进行研究,an是等差数列,若0a10,设公差为d,则d0,数列各项均为正,由于aa1a3(a1d)2a1(a12d)a2a1dd2a2a1dd20,则aa1a3a2,选C二、填空题5在等差数列an中,已知amnA,amnB,则am
6、_(AB)_.解析mn,m,mn成等差数列,又an是等差数列amn,am,amn成等差数列,2amamnamnAB,am(AB)6已知数列an满足a11,若点(,)在直线xy10上,则an_n2_.解析依题意得10,即1,数列为等差数列,且公差d1.又1,1(n1)1n,ann2.三、解答题7在ABC中,若lg(sinA),lg(sinB),lg(sinC)成等差数列,并且三个内角A,B,C也成等差数列,试判断该三角形的形状解析由A,B,C成等差数列,得2BAC,又ABC,3B,B.lg(sinA),lg(sinB),lg(sinC)成等差数列,2lg(sinB)lg(sinA)lg(sinC),即sin2BsinAsinC,sinAsinC.又cos(AC)cosAcosCsinAsinC,cos(AC)cosAcosCsinAsinC,sinAsinCcos(AC)cos(AC)coscos(AC).cos(AC).cos(AC)1.AC(,),AC0,即AC,ABC.故ABC为等边三角形8设数列an是等差数列,bn()an又b1b2b3,b1b2b3,求通项an.解析b1b2b3,又bn()an,()a1()a2()a3.()a1a2a3,a1a2a33,又an成等差数列a21,a1a32,b1b3,b1b3,或,即或,an2n3或an2n5.