1、三角函数0998.已知函数ysinxcosx,xR.(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图象可由ysinx(xR)的图象经过怎样的平移和伸缩变换得到?经过这样的变换就得到函数ysinxcosx的图象.99.设是第二象限的角,sin=,求sin(2)的值.解:sin=,是第二象限角,cos=,sin2=且2k+2k+,4k+24k+2.cos2=,故sin(2)=sin(2)=.100.在ABC中,a,b,c分别是角A,B,C的对边,设a+c=2b,AC=.求sinB的值.100.解:由正弦定理和已知条件a+c=2b得sinAsinC2sinB由和差化积公式得2sin2s
2、inB101.已知tan,求sin()的值.解:tan,sin=.sin(+)=sincos+cossin=.102.已知sin(+)sin()=,(,),求sin4.解:sin(+)sin()=,sin(+)cos()=,即sin(+)cos(+)=,sin(+2)=,即cos2=,(,),则2(,2),sin2=.于是sin4=2sin2cos2=.103.已知ABC的三个内角A,B,C满足:AC2B,求cos的值.104.求sin220cos250sin20cos50的值.解:原式(1cos40)(1cos100)(sin70sin30)1(cos100cos40)sin70sin70s
3、in30sin70sin70sin70.评述:本题考查三角恒等式和运算能力.105.已知sin,(,),tan(),求tan(2)的值.106.求函数y=+sin2x的最小值.解:因为sin3xsin3x+cos3xcos3x=(sin3xsinx)sin2x+(cos3xcosx)cos2x=(cos2xcos4x)sin2x+(cos2x+cos4x)cos2x=(sin2x+cos2x)cos2x+(cos2xsin2x)cos4x=(cos2x+cos2xcos4x)=cos2x(1+cos4x)=cos32x107.已知函数f(x)=tanx,x(0,),若x1、x2(0,),且x1x2,证明f(x1)f(x2)f().证明:tanx1tanx2因为x1,x2(0,),x1x2,所以2sin(x1x2)0,cosx1cosx20,且0cos(x1x2)1,从而有0cos(x1x2)cos(x1x2)1cos(x1x2),由此得tanx1tanx2,所以(tanx1tanx2)tan即f(x1)f(x2)f().