收藏 分享(赏)

2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx

上传人:高**** 文档编号:1249056 上传时间:2024-06-05 格式:DOCX 页数:7 大小:301.13KB
下载 相关 举报
2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx_第1页
第1页 / 共7页
2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx_第2页
第2页 / 共7页
2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx_第3页
第3页 / 共7页
2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx_第4页
第4页 / 共7页
2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx_第5页
第5页 / 共7页
2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx_第6页
第6页 / 共7页
2021届高考数学二轮复习 题型练6 大题专项(四)立体几何综合问题 理(含解析).docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、题型练6大题专项(四)立体几何综合问题题型练第68页一、解答题1.如图,已知四棱台ABCD-A1B1C1D1的上、下底面分别是边长为3和6的正方形.A1A=6,且A1A底面ABCD.点P,Q分别在棱DD1,BC上.(1)若P是DD1的中点,证明:AB1PQ;(2)若PQ平面ABB1A1,二面角P-QD-A的余弦值为37,求四面体ADPQ的体积.解:由题设知,AA1,AB,AD两两垂直,以A为坐标原点,AB,AD,AA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则相关各点的坐标为A(0,0,0),B1(3,0,6),D(0,6,0),D1(0,3,6),Q(6,m,0),其中

2、m=BQ,0m6.(1)证明:若P是DD1的中点,则P0,92,3,PQ=6,m-92,-3.又AB1=(3,0,6),于是AB1PQ=18-18=0,所以AB1PQ,即AB1PQ.(2)由题设知,DQ=(6,m-6,0),DD1=(0,-3,6)是平面PQD内的两个不共线向量.设n1=(x,y,z)是平面PQD的一个法向量,则n1DQ=0,n1DD1=0,即6x+(m-6)y=0,-3y+6z=0.取y=6,得n1=(6-m,6,3).又平面AQD的一个法向量是n2=(0,0,1),所以cos=n1n2|n1|n2|=31(6-m)2+62+32=3(6-m)2+45.而二面角P-QD-A的

3、余弦值为37,因此3(6-m)2+45=37,解得m=4或m=8(舍去),此时Q(6,4,0).设DP=DD1(01),而DD1=(0,-3,6),由此得点P(0,6-3,6),所以PQ=(6,3-2,-6).因为PQ平面ABB1A1,且平面ABB1A1的一个法向量是n3=(0,1,0),所以PQn3=0,即3-2=0,亦即=23,从而P(0,4,4).于是,将四面体ADPQ视为以ADQ为底面的三棱锥P-ADQ,则其高h=4.故四面体ADPQ的体积V=13SADQh=1312664=24.2.(2020全国,理20)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,

4、M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1MN,且平面A1AMN平面EB1C1F;(2)设O为A1B1C1的中心,若AO平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.答案:(1)证明因为M,N分别为BC,B1C1的中点,所以MNCC1.又由已知得AA1CC1,故AA1MN.因为A1B1C1是正三角形,所以B1C1A1N.又B1C1MN,故B1C1平面A1AMN.所以平面A1AMN平面EB1C1F.(2)解由已知得AMBC.以M为坐标原点,MA的方向为x轴正方向,|MB|为单位长,建立如图所示的空

5、间直角坐标系M-xyz,则AB=2,AM=3.连接NP,则四边形AONP为平行四边形,故PM=233,E233,13,0.由(1)知平面A1AMN平面ABC.作NQAM,垂足为Q,则NQ平面ABC.设点Q(a,0,0),则NQ=4-233-a2,B1a,1,4-233-a2,故B1E=233-a,-23,-4-233-a2,|B1E|=2103.又n=(0,-1,0)是平面A1AMN的法向量,故sin2-=cos=nB1E|n|B1E|=1010.所以直线B1E与平面A1AMN所成角的正弦值为1010.3.(2020全国,理19)如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD

6、1,BB1上,且2DE=ED1,BF=2FB1.(1)证明:点C1在平面AEF内;(2)若AB=2,AD=1,AA1=3,求二面角A-EF-A1的正弦值.解:设AB=a,AD=b,AA1=c,如图,以C1为坐标原点,C1D1的方向为x轴正方向,建立空间直角坐标系C1-xyz.(1)证明:连接C1F,则点C1(0,0,0),A(a,b,c),Ea,0,23c,F0,b,13c,EA=0,b,13c,C1F=0,b,13c,得EA=C1F,因此EAC1F,即A,E,F,C1四点共面,所以点C1在平面AEF内.(2)由已知得A(2,1,3),E(2,0,2),F(0,1,1),A1(2,1,0),A

7、E=(0,-1,-1),AF=(-2,0,-2),A1E=(0,-1,2),A1F=(-2,0,1).设n1=(x,y,z)为平面AEF的法向量,则n1AE=0,n1AF=0,即-y-z=0,-2x-2z=0,可取n1=(-1,-1,1).设n2为平面A1EF的法向量,则n2A1E=0,n2A1F=0,同理可取n2=12,2,1.因为cos=n1n2|n1|n2|=-77,所以二面角A-EF-A1的正弦值为427.4.在如图所示的组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P平面CC1D1D,且PD=PC=2.(1)证明:PD平面PBC;(

8、2)求PA与平面ABCD所成角的正切值;(3)当AA1的长为何值时,PC平面AB1D?答案:(1)证明如图,建立空间直角坐标系.设棱长AA1=a,则点D(0,0,a),P(0,1,a+1),B(3,2,a),C(0,2,a).于是PD=(0,-1,-1),PB=(3,1,-1),PC=(0,1,-1),所以PDPB=0,PDPC=0.所以PD垂直于平面PBC内的两条相交直线PC和PB,由线面垂直的判定定理,得PD平面PBC.(2)解因为点A(3,0,a),PA=(3,-1,-1),而平面ABCD的一个法向量为n1=(0,0,1),所以cos=-1111=-1111.所以PA与平面ABCD所成角

9、的正弦值为1111.所以PA与平面ABCD所成角的正切值为1010.(3)解因为点D(0,0,a),B1(3,2,0),A(3,0,a),所以DA=(3,0,0),AB1=(0,2,-a).设平面AB1D的法向量为n2=(x,y,z),则有DAn2=3x=0,AB1n2=2y-az=0,令z=2,可得平面AB1D的一个法向量为n2=(0,a,2).若要使得PC平面AB1D,则要PCn2,即PCn2=a-2=0,解得a=2.所以当AA1=2时,PC平面AB1D.5.如图,在四棱锥P-ABCD中,PA平面ABCD,ACAD,ABBC,BAC=45,PA=AD=2,AC=1.(1)证明:PCAD;(

10、2)求二面角A-PC-D的正弦值;(3)设E为棱PA上的点,满足异面直线BE与CD所成的角为30,求AE的长.解:如图,以点A为原点建立空间直角坐标系,依题意得点A(0,0,0),D(2,0,0),C(0,1,0),B-12,12,0,P(0,0,2).(1)证明:易得PC=(0,1,-2),AD=(2,0,0).于是PCAD=0,所以PCAD.(2)PC=(0,1,-2),CD=(2,-1,0).设平面PCD的法向量n=(x,y,z).则nPC=0,nCD=0,即y-2z=0,2x-y=0.不妨令z=1,可得n=(1,2,1).可取平面PAC的法向量m=(1,0,0).于是cos=mn|m|

11、n|=16=66,从而sin=306.所以二面角A-PC-D的正弦值为306.(3)设点E的坐标为(0,0,h),其中h0,2.由此得BE=12,-12,h.又CD=(2,-1,0),故cos=BECD|BE|CD|=3212+h25=310+20h2,所以310+20h2=cos30=32,解得h=1010,即AE=1010.6.已知四边形ABCD满足ADBC,BA=AD=DC=12BC=a,E是BC的中点,将BAE沿AE翻折成B1AE,使平面B1AE平面AECD,F为B1D的中点.(1)求四棱锥B1-AECD的体积;(2)证明:B1E平面ACF;(3)求平面ADB1与平面ECB1所成锐二面

12、角的余弦值.答案:(1)解取AE的中点M,连接B1M.因为BA=AD=DC=12BC=a,ABE为等边三角形,所以B1M=32a.又因为平面B1AE平面AECD,所以B1M平面AECD,所以V=1332aaasin3=a34.(2)证明连接ED交AC于点O,连接OF,因为四边形AECD为菱形,OE=OD,所以FOB1E,所以B1E平面ACF.(3)解连接MD,则AMD=90,分别以ME,MD,MB1所在直线为x,y,z轴建立空间直角坐标系,则点Ea2,0,0,Ca,32a,0,A-a2,0,0,D0,32a,0,B10,0,32a,所以EC=a2,32a,0,EB1=-a2,0,3a2,AD=a2,3a2,0,AB1=a2,0,3a2.设平面ECB1的法向量为u=(x,y,z),则a2x+32ay=0,-a2x+32az=0,令x=1,u=1,-33,33,同理平面ADB1的法向量为v=1,-33,-33,所以cos=1+13-131+13+131+13+13=35,故平面ADB1与平面ECB1所成锐二面角的余弦值为35.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3