1、考 点 集 训【p207】A组1已知等比数列an的前n项和Sn,且S415,a2a410,则a2()A1 B2 C2 D1【解析】由题得a11,q2,a2122.故选C.【答案】C2在等比数列an中,a29,a5243,则a1与a7的等比中项为()A81 B81 C81 D27【解析】设等比数列an的公比q,a29,a5243 ,2439q3,解得q3.又a1a7a ,a1 与a7 的等比中项为a4a2q293281 .故选A.【答案】A3已知等比数列an的前n项和为Sn,且满足2Sn2n1,则的值为()A4 B2 C2 D4【解析】根据题意,当n1时,2S12a14,故当n2时,anSnSn
2、12n1,则a11,故1,解得2.故选C.【答案】C4已知各项不为0的等差数列an满足a52a2a80,数列bn是等比数列,且b7a7,则b3b11等于()A. B. C. D.【解析】a52a2a80,2aa52a8a5a7da7d3a7,又a70,a7,b7,则b3b11(b7)2.【答案】C5等差数列an的前n项和是Sn,公差d不等于零,若a2,a3,a6成等比数列,则()Aa1d0,dS30 Ba1d0,dS30Ca1d0 Da1d0,dS30【解析】由a2,a3,a6成等比数列,可得aa2a6,可得(a12d)2(a1d)(a15d),即2a1dd20,公差d不等于零,a1d0.故选
3、C.【答案】C6在各项均为正数的等比数列an中,若a5a114,a6a128,则a8a9_【解析】由等比数列的性质得aa5a114,aa6a128,因为数列an的各项均为正,所以a82,a92,所以a8a94.【答案】47已知数列an满足a11,an12an1(nN*)(1)求证:数列an1是等比数列;(2)求an的通项公式和前n项和Sn.【解析】(1)由an12an1得an112(an1),又an10,2,即an1为等比数列(2)由(1)知an1(a11)qn1,即an(a11)qn1122n112n1.Sna1a2ann2n12n.8已知数列an的前n项和为Sn,且a11,nan1(n2)
4、Sn(n1,2,3,)(1)求证:数列为等比数列;(2)求数列an的通项公式及前n项和Sn.【解析】(1)证明:将an1Sn1Sn代入nan1(n2)Sn,整理得2,又由已知得1,所以数列是首项为1,公比为2的等比数列(2)由(1)结论可得2n1,Snn2n1,当n2时,anSnSn1n2n1(n1)2n2(n1)2n2,又a11,满足an(n1)2n2,故an的通项公式为an(n1)2n2.B组1已知数列a,a(1a),a(1a)2,构成等比数列,则实数a应满足()Aa1 Ba0或a1Ca0 Da0且a1【解析】显然1a,但a0且1a0,故选D.【答案】D2已知数列an满足log3an1lo
5、g3an1(nN*),且a2a4a69,则log(a5a7a9)的值是()A5 B C5 D.【解析】log3an1log3an1,an13an.数列an是以3为公比的等比数列a2a4a6a2(1q2q4)9.a5a7a9a5(1q2q4)a2q3(1q2q4)35.log355.【答案】A3已知正项等比数列满足a5a4a3a29,则a6a7的最小值为()A9 B18 C. 27 D36【解析】设a2a3x,那么a4a5xq2,即xq2x9,整理为x(q21)9,x0,即q210,a6a7xq49(q21)1821836,等号成立的条件是q211,即q时等号成立,所以a6a7的最小值是36,故选D.【答案】D4已知数列an为正项的递增等比数列,a1a582,a2a481,记数列的前n项和为Tn,则使不等式2 0201成立的最大正整数n的值为_【解析】数列an为正项的递增等比数列,由解得则q3,an3n1.Tn23.2 0201,即2 0201,3n2 020.使不等式成立的最大正整数n为6.【答案】6