ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:69.35KB ,
资源ID:1241818      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1241818-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020高考文科数学(人教A版)总复习练习:第九章 解析几何 课时规范练7 WORD版含解析.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020高考文科数学(人教A版)总复习练习:第九章 解析几何 课时规范练7 WORD版含解析.docx

1、课时规范练46抛物线基础巩固组1.(2018山东春季联考)已知抛物线x2=ay(a0)的焦点为F,准线为l,该抛物线上的点M到x轴的距离为5,且|MF|=7,则焦点F到准线l的距离是()A.2B.3C.4D.52.O为坐标原点,F为抛物线C:y2=42x的焦点,P为抛物线C上一点,若|PF|=42,则POF的面积为()A.2B.22C.23D.43.(2018云南昆明一中模拟,5)已知点F是抛物线C:x2=2py(p0)的焦点,O为坐标原点,若以F为圆心,|FO|为半径的圆与直线3x-y+3=0相切,则抛物线C的方程为()A.x2=2yB.x2=4yC.x2=6yD.x2=8y4.(2018广

2、东江门一模,10)F是抛物线y2=2x的焦点,点P在抛物线上,点Q在抛物线的准线上,若PF=2FQ,则|PQ|=()A.92B.4C.72D.35.(2018湖南师范大学附属中学三模,11)已知F为抛物线C:y2=4x的焦点,过F的直线l与抛物线C相交于A,B两点,线段AB的垂直平分线交x轴于点M,垂足为E,若|AB|=6,则|EM|的长为()A.22B.6C.2D.36.(2018齐鲁名校教科研协作体山东、湖北部分重点中学冲刺,11)已知抛物线C:y2=2px(p0),焦点为F,直线y=x与抛物线C交于O,A两点(O为坐标原点),过F作直线OA的平行线交抛物线C于B,D两点(其中B在第一象限

3、),直线AB与直线OD交于点E,若OEF的面积等于1,则抛物线C的准线方程为()A.x=-1B.x=-12C.y=-1D.y=-127.过抛物线y2=2px(p0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9xB.y2=6xC.y2=3xD.y2=3x8.已知抛物线y2=4x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为.9.(2018安徽巢湖一模,15)已知抛物线C:y2=4x的焦点是F,直线l1:y=x-1交抛物线于A,B两点,分别从A,B两

4、点向直线l2:x=-2作垂线,垂足是D,C,则四边形ABCD的周长为.10.(2017广东江门一模,10改编)F是抛物线y2=2x的焦点,以F为端点的射线与抛物线相交于点A,与抛物线的准线相交于点B,若FB=4FA,则FAFB=.综合提升组11.(2018山东烟台模拟,6)已知直线l1:x=2,l2:3x+5y-30=0,点P为抛物线y2=-8x上的任一点,则P到直线l1,l2的距离之和的最小值为()A.2B.234C.181734D.16153412.(2017全国,文12)过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MNl,则M到

5、直线NF的距离为()A.5B.22C.23D.3313.已知抛物线的方程为y2=2px(p0),O为坐标原点,A,B为抛物线上的点,若OAB为等边三角形,且面积为483,则p的值为.14.(2017安徽马鞍山一模,20)设动点P(x,y)(x0)到定点F(1,0)的距离比它到y轴的距离大1,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设D(x0,2)是曲线C上一点,与两坐标轴都不平行的直线l1,l2过点D,且它们的倾斜角互补.若直线l1,l2与曲线C的另一交点分别是M,N,证明直线MN的斜率为定值.创新应用组15. (2018北京城六区一模,2)如图,在长方体ABCD-A1B1C1D1中

6、,AA1=AB=2,BC=1,点P在侧面A1ABB1上,满足到直线AA1和CD的距离相等的点P()A.不存在B.恰有1个C.恰有2个D.有无数个16.(2018河北衡水模拟,20)已知抛物线C:y2=2px(p0),斜率为1的直线l1交抛物线C于A,B两点,当直线l1过点(1,0)时,以AB为直径的圆与直线x=-1相切.(1)求抛物线C的方程;(2)与l1平行的直线l2交抛物线于C,D两点,若平行线l1,l2之间的距离为22,且OCD的面积是OAB面积的3倍,求l1和l2的方程.课时规范练46抛物线1.C因为|MF|=7,点M到x轴的距离为5,所以|a|4=7-5,所以|a|=8,因此焦点F到

7、准线l的距离是|a|2=4,故选C.2.C利用|PF|=xP+2=42,可得xP=32.yP=26.SPOF=12|OF|yP|=23.故选C.3.B由抛物线C的方程为x2=2py(p0),则焦点坐标F0,p2,所以焦点F0,p2到直线3x-y+3=0的距离为d=|-p2+3|2=p2,解得p=2,所以抛物线的方程为x2=4y,故选B.4.A设抛物线的准线和对称轴的交点为K.过点P作准线的垂线,垂足为M,则|PF|=|PM|.由QFKQMP,得|FK|MP|=|QF|QP|,即1|MP|=13,所以|MP|=3.故|PF|=3,|QP|=32,所以|PQ|=|PF|+|QP|=92.故选A.5

8、.B由已知得F(1,0),设直线l的方程为x=my+1,与y2=4x联立得y2-4my-4=0,设A(x1,y1),B(x2,y2),E(x0,y0),则y1+y2=4m,则y0=y1+y22=2m,x0=2m2+1,所以E(2m2+1,2m),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4=6,解得m2=12,线段AB的垂直平分线为y-2m=-m(x-2m2-1),令y=0,得M(2m2+3,0),从而|ME|=4+4m2=6,故选B.6.A7.C如图,分别过点A,B作AA1l于点A1,BB1l于点B1,由抛物线的定义知,|AF|=|AA1|,|BF|=|BB1|.|BC|=2

9、|BF|,|BC|=2|BB1|.BCB1=30,AFx=60.连接A1F,则AA1F为等边三角形,过点F作FF1AA1于点F1,则F1为AA1的中点,设l交x轴于点K,则|KF|=|A1F1|=12|AA1|=12|AF|,即p=32,故抛物线方程为y2=3x.8.2由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2,即|AC|+|BD|取得最小值时当且仅当|AB|取得最小值.依抛物线定义知当|AB|为通径,即|AB|=2p=4时,为最小值,所以|AC|+|BD|的最小值为2.9.18+42由题知,F(1,0),准线l的方程是x=-1,p=2.设A(x1,y1),

10、B(x2,y2),由y=x-1,y2=4x,消去y,得x2=-6x+1=0.因为直线l1经过焦点F(1,0),所以|AB|=x1+x2+p=8.由抛物线上的点的几何特征知|AD|+|BC|=|AB|+2=10,因为直线l1的倾斜角是4,所以|CD|=|AB|sin 4=822=42,所以四边形ABCD的周长是|AD|+|BC|+|AB|+|CD|=10+8+42=18+42.10.94由题意,设点A的横坐标为m,过点A向准线作垂线交垂线于点C,设准线与x轴的交点为D,则由抛物线的定义,|FA|=m+12,由BACBFD,得m+121=34,m=14.|FA|=34,|FB|=3,FAFB=|F

11、A|FB|=94.11.C抛物线y2=-8x的焦点为F(-2,0),准线为l1:x=2,P到l1的距离等于|PF|,P到直线l1,l2的距离之和的最小值为F(-2,0)到直线l2的距离d=|-6+0-30|9+25=181734.故选C.12.C由题意可知抛物线的焦点F(1,0),准线l的方程为x=-1,可得直线MF:y=3(x-1),与抛物线y2=4x联立,消去y得3x2-10x+3=0,解得x1=13,x2=3.因为M在x轴的上方,所以M(3,23).因为MNl,且N在l上,所以N(-1,23).因为F(1,0),所以直线NF:y=-3(x-1).所以M到直线NF的距离为|3(3-1)+2

12、3|(-3)2+12=23.13.2设B(x1,y1),A(x2,y2).|OA|=|OB|,x12+y12=x22+y22.又y12=2px1,y22=2px2,x22-x12+2p(x2-x1)=0,即(x2-x1)(x1+x2+2p)=0.又x1,x2与p同号,x1+x2=2p0.x2-x1=0,即x1=x2.根据抛物线对称性可知点B,A关于x轴对称,由OAB为等边三角形,不妨设直线OB的方程为y=33x,由y=33x,y2=2px,解得B(6p,23p),|OB|=(6p)2+(23p)2=43p.OAB的面积为483,34(43p)2=483,p=2.14.(1)解 由题意知,动点P

13、的轨迹方程是以F(1,0)为焦点,以x=-1为准线的抛物线,故曲线C的方程为y2=4x.(2)证明 由D(x0,2)在曲线C上,得4=4x0,则x0=1,从而D(1,2).设M(x1,y1),N(x2,y2),直线l1:y=k(x-1)+2,则l2:y=-k(x-1)+2,由y=k(x-1)+2,y2=4x得k2x2-(2k2-4k+4)x+(k-2)2=0,x1=(k-2)2k2=k2-4k+4k2,同理x2=k2+4k+4k2.x1+x2=2k2+8k2,x1-x2=-8k.y1-y2=k(x1+x2)-2k=8k.kMN=y1-y2x1-x2=8k-8k=-1,即直线MN的斜率为定值-1

14、.15.D由于点P在侧面A1ABB1上,所以点P到直线AA1的距离为PA,所以点P为到定点A与到定直线CD距离相等的点集合,满足抛物线的定义,有无数个.故选D.16.解 (1)设直线AB方程为y=x-b,代入y2=2px,得x2-(2b+2p)x+b2=0,=(2b+2p)2-4b2=8bp+4p20.设A(x1,y1),B(x2,y2),则x1+x2=2b+2p,x1x2=b2,|AB|=2|x1-x2|=2(x1+x2)2-4x1x2=222bp+p2,当b=1时,|AB|=222p+p2,AB的中点为(1+p,p),依题意可知2(1+p+1)=222p+p2,解得p=2.所以抛物线方程为y2=4x.(2)点O到直线l1的距离为d=|b|2,SOAB=12|AB|d=12224b+4|b|2=2|b|b+1.因为平行线l1,l2之间的距离为22,所以直线CD方程为y=x-(b+1),SOCD=2|b+1|b+2.依题意可知32|b|b+1=2|b+1|b+2,即3b2(b+1)=(b+1)2(b+2),化简得2b2-3b-2=0,所以b=-12或b=2,满足0,所以l1:y=x+12,l2:y=x-12或l1:y=x-2,l2:y=x-3.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3