1、一、复习准备:1. 提问:N、Z、Q、R分别代表什么?它们的如何发展得来的?(让学生感受数系的发展与生活是密切相关的)2判断下列方程在实数集中的解的个数(引导学生回顾根的个数与的关系):(1) (2) (3) (4)3. 人类总是想使自己遇到的一切都能有合理的解释,不想得到“无解”的答案。讨论:若给方程一个解,则这个解要满足什么条件?是否在实数集中? 实数与相乘、相加的结果应如何?二、讲授新课:1. 教学复数的概念: 定义复数:形如的数叫做复数,通常记为(复数的代数形式),其中叫虚数单位,叫实部,叫虚部,数集叫做复数集。出示例1:下列数是否是复数,试找出它们各自的实部和虚部。规定:,强调:两复
2、数不能比较大小,只有等与不等。讨论:复数的代数形式中规定,取何值时,它为实数?数集与实数集有何关系?定义虚数:叫做虚数,叫做纯虚数。 数集的关系:上述例1中,根据定义判断哪些是实数、虚数、纯虚数?2.出示例题2:(引导学生根据实数、虚数、纯虚数的定义去分析讨论)练习:已知复数与相等,且的实部、虚部分别是方程的两根,试求:的值。(讨论中,k取何值时是实数?)小结:复数、虚数、纯虚数的概念及它们之间的关系及两复数相等的充要条件。三、巩固练习:1指出下列复数哪些是实数、虚数、纯虚数,是虚数的找出其实部与虚部。 2判断 两复数,若虚部都是3,则实部大的那个复数较大。 复平面内,所有纯虚数都落在虚轴上,所有虚轴上的点都是纯虚数。3若,则的值是?4已知是虚数单位,复数,当取何实数时,是:(1)实数 (2) 虚数 (3)纯虚数 (4)零作业:2、3题。