1、【自主学习】任务1:阅读教材P2224,理解下列问题:1 .坐标法处理垂直、共线、共点等问题:A、B、C共线证明三线a、b、c共点,求a、b交点A,a、c交点A,再说明A、A重合即可2. 问题探究1.怎样由正弦曲线ysinx 得到曲线ysin2x?2. 怎样由正弦曲线ysinx 得到曲线y3sinx?3. 怎样由正弦曲线ysinx 得到曲线y3sin2x?任务2:完成下列问题:平面直角坐标系中的伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点P(x,y),称j为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.【合作探究】例1. (1)在同一坐标系下经过
2、伸缩变换例1. (1)在同一坐标系下经过伸缩变换后,圆的方程x2y21变成了什么曲线? (2)经过一个伸缩变换后,圆x2y24变为椭圆,求这个伸缩变换.【目标检测】1. 在同一平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形.2. 在同一平面直角坐标系中,经过伸缩变换后,曲线C变为曲线求曲线C的方程并画出图象.3. 将曲线C按伸缩变换公式变换得到曲线方程为则曲线C的方程为( D )4. 将曲线伸缩变换为的伸缩变换公式为( A )5. 求ysinx经过伸缩变换后的方程.6. 在同一平面直角坐标系中,求满足下列图形变换的伸缩变换:(1)直线x2y2变成直线2xy4; (2)曲线x2y22x0变成曲线x216y2 4x0. 【学习反思】:本节课我学到了什么?我的学习效率如何?还有哪些没学懂。