ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:448.50KB ,
资源ID:1238507      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1238507-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(考前30天之备战2013高考文数冲刺押题系列 专题05 圆锥曲线(下)(学生版) WORD版无答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

考前30天之备战2013高考文数冲刺押题系列 专题05 圆锥曲线(下)(学生版) WORD版无答案.doc

1、【名师备考建议】鉴于圆锥问题具有综合性强、区分度高的特点,名师给出以下四点备考建议:1、 主观形成圆锥的知识结构;椭圆、双曲线、抛物线,在这三类曲线身上是有很多的基本性质具有相关性,因此,在复习备考的过程中,应当主观的形成对三类圆锥曲线方程以及性质的认识,形成一张深刻记忆的知识列表;同时对基本的题型也要有一定的把握;2、 认真研究三年高考的各种题型;由于圆锥曲线的难度系数较高,不易把握,但仍然有理可循;复习备考的过程中,无论是老师还是学生都应当认真研究近三年文理科的出题方向,至于从何研究,可以从近三年的质检卷、名校卷以及高考卷中得到启示,努力理清每一道问题的思路、做法,这样可以有效的培养解题意

2、识;3、 熟练掌握部分题型的解题模式;三轮复习中,由于做题的经验得到一定的积累,多多少少对题目的解题方法和手段有了一定的认识,比如,直线与圆锥曲线的问题,大部分是必须联立直线与圆锥曲线的方程进行解题,这是一种模式;再比如,圆锥曲线的探究性问题,可以先采用一些特殊值进行计算,得到结论以后加以证明;这都是必须熟练掌握的解题模式;4、 调整对待圆锥曲线的心理状态;由于圆锥曲线问题的综合性较强,并且经常作为倒二题出现,这就要求学生合理的分配自己的时间;如果实在无法求解,无须在此问题上进行逗留,以免失去了做压轴题和检查的时间;对于优等生来说,必须精益求精;对于中等生来说,只需尽其所能;对于差等生来说,一

3、定不必强求.【高考冲刺押题】【押题6】已知椭圆的中心为坐标原点,焦点在轴上,离心率,椭圆上的点到焦点的最短距离为, 直线经过轴上一点,且与椭圆交于相异两点,且(1) 求椭圆的标准方程;(2) 求的取值范围【押题7】已知是抛物线上一点,经过点的直线与抛物线交于两点(不同于点),直线分别交直线于点.(1)求抛物线方程及其焦点坐标;(2)已知为原点,求证:为定值.【押题8】如图,F1,F2是离心率为的椭圆C:(ab0)的左、右焦点,直线:x将线段F1F2分成两段,其长度之比为1 : 3设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上(1)求椭圆C的方程;(2)

4、 求的取值范围【】 【押题9】在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点(1)求曲线的轨迹方程;(2)是否存在面积的最大值,若存在,求出的面积;若不存在,说明理由.【押题10】在平面直角坐标系中,已知点,P是动点,且三角形的三边所在直线的斜率满足(1)求点P的轨迹的方程;(2)若Q 是轨迹上异于点的一个点,且,直线与交于点M,试探究:点M的横坐标是否为定值?并说明理由【名校试题精选】【模拟训练1】已知椭圆的一个顶点为,离心率,直线交椭圆于、两点(1)若直线的方程为,求弦的长;(2)如果的重心恰好为椭圆的右焦点,求直线方程的一般式【】 【模拟训练

5、2】已知椭圆C:的离心率为,短轴的一个端点到右焦点的距离为3.(1)求椭圆C的方程;(2)过椭圆C上的动点P引圆的两条切线PA,PB,A,B分别为切点,试探究椭圆C上是否存在点P,使PAPB?若存在,请求出点P的坐标;若不存在,请说明理由.【模拟训练3】如图,是椭圆的两个顶点,直线的斜率为(1)求椭圆的方程;(2)设直线平行于,与轴分别交于点,与椭圆相交于证明:的面积等于的面积【模拟训练4】已知椭圆:的一个焦点为,左右顶点分别为,. 经过点的直线与椭圆交于,两点.(1)求椭圆方程;(2)当直线的倾斜角为时,求线段的长;(3)记与的面积分别为和,求的最大值. 【】 【模拟训练5】如图,在平面直坐

6、标系中,已知椭圆,经过点,其中e为椭圆的离心率且椭圆与直线 有且只有一个交点。(1)求椭圆的方程;(2)设不经过原点的直线与椭圆相交与A,B两点,第一象限内的点在椭圆上,直线平分线段,求:当的面积取得最大值时直线的方程。【模拟训练6】如图所示,椭圆C:的离心率,左焦点为右焦点为,短轴两个端点为.与轴不垂直的直线与椭圆C交于不同的两点、,记直线、的斜率分别为、,且(1)求椭圆的方程;(2)求证直线与轴相交于定点,并求出定点坐标. (3)当弦的中点落在内(包括边界)时,求直线的斜率的取值。【模拟训练7】已知椭圆的中心在原点,焦点在轴上且过点,离心率是来(1)求椭圆的标准方程;(2)直线过点且与椭圆

7、交于,两点,若,求直线的方程.【模拟训练8】设椭圆的左右顶点分别为,离心率过该椭圆上任一点作轴,垂足为,点在的延长线上,且(1)求椭圆的方程;(2)求动点的轨迹的方程;(3)设直线(点不同于)与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论【模拟训练9】已知椭圆的左、右焦点分别为点在椭圆上,过点且与坐标轴不垂直的直线交椭圆于两点.(1)求椭圆的方程;(2)线段上是否存在点,使得若存在,求出实数的取值范围;若不存在,说明理由.【模拟训练10】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点。(1)求椭圆C的方程;(2)求的取值范围;(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点. 【】

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3