1、白水中学2020届高一级下学期期末数学试题命题人:孙伟 审题人:孙伟(满分:150分 时间:120分钟)一、选择题(共12个小题,每小题5分,共60分)1已知点在第三象限,则角在( ) A第一象限 B第二象限 C第三象限 D第四象限2某校选修乒乓球课程的学生中,高一年级有50名,高二年级有30名现用分层抽样的方法在这80名学生中抽取一个样本,已知在高二年级的学生中抽取了6名,则在高一年级的学生中应抽取的人数为( )A6 B8 C10 D123若某校高一年级8个班参加合唱比赛的得分如茎叶图如下图所示,则这组数据的中位数和平均数分别为( )开始输出S结束否是第4题图 A91.5和91.5 B91.
2、5和92 C91和91.5 D91和928 9 79 3 1 6 4 0 2第3题图4执行如右图所示的程序框图,输出的值为( ) A2 B4 C8 D165下列说法: 将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; 设有一个回归方程,变量增加一个单位时,平均增加5个单位; 线性回归方程必过点; 曲线上的点与该点的坐标之间具有相关关系 其中错误的个数是( )A1 B2 C3 D46函数是( ) A周期为的奇函数 B周期为的偶函数 C周期为的奇函数 D周期为的偶函数7向边长为2的正方形中随机撒一粒豆子,则豆子落在正方形的内切圆的概率是( )A B C D 8从装有2个红球和2个黑球的
3、口袋内任取2个球,那么互斥而不对立的两个事件是( )A至少有一个黑球与都是黑球 B至少有一个黑球与都是红球C恰有1个黑球与恰有2个黑球 D至少有一个黑球与至少有1个红球9已知向量,向量满足,则等于( )A B C D 第10题图10函数 (其中)的图像如图所示,为了得到的图像,则只需将的图像( )A向右平移个单位 B向右平移个单位C向左平移个单位 D向左平移个单位11在中,若点满足,则( )A B C D12已知,则的值为( )A B C D 二、填空题(共5个小题,每小题5分,共25分)13圆的半径为cm,则圆心角为的圆弧与半径围成的扇形的面积为 14同时抛掷两枚质地均匀的骰子,向上的点数之
4、和为8的概率为 15已知,则向量与的夹角是 16已知(为锐角),且,则的值为 17关于函数,有下列命题:由可得必是的整数倍;的表达式可改写为;的图像关于点对称;的图像关于直线对称其中正确的命题是 (把你认为正确的命题序号都填上)三、解答题(本大题6个小题,共65分解答应写出文字说明,证明过程或演算步骤)18(12分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如右图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为20 (1)第二小组的频率是多少?样本容量是多少?(2)规定次数在110以上(含110次)为
5、达标,该校高一共有725名学生,试估计该学校全体高一学生达标的人数有多少?19(12分)已知向量,(1)求的最大值;(2)当与共线时,求的值20(13分)有关部门要了解甲型流感预防知识在学校的普及情况,命制了一份有10道题的问卷到各学校做问卷调查某中学、两个班各被随机抽取5名学生接受问卷调查,班5名学生得分为:5、8、9、9、9,班5名学生得分为:6、7、8、9、10(1)请你判断、两个班中哪个班的问卷得分要稳定一些,并说明你的理由;(2)如果把班5名学生的得分看成一个总体,并用简单随机抽样方法从中抽取样本容量为2的样本,求样本平均数与总体平均数之差的绝对值不小于1的概率第21题图21(14分
6、)函数的部分图像如图所示,该图像与轴交于点,与轴交于点、,点为最高点,且的面积为(1)求函数的解析式;(2)若,求的值22(14分)设函数,其中向量,(1)求函数的单调减区间;(2)当时,方程有且仅有一个根,求实数的取值范围 数学答案一、 选择题(每小题5分,共计60分)1、 B 2、C 3、A 4、 C 5、B 6、C 7、D 8、C 9、B 10、A 11、C 12、D二、填空题(每小题5分,共计25分) 13、 14、 15、 16、 17、三、解答题(共计65分)18、解:(1)第二小组的频率是0.08, 样本容量是250-6分(2)638人-12分19、解:(1)-4分 -6分 (2
7、)当与共线时,-9分 -12分20、解:(1) -2分 , -6分因为 所以B班的问卷得分更稳定一些。-7分(2) 取得的样本可能为(6,7)、(6,8)、(6,9)、(6,10)(7,8)、(7,9)(7,10)、(8,9)(8,10)、(9,10)共10种结果-9分 对应的平均数为6.5、7、7.5、8、7.5、8、8.5、8.5、9、9.5,设事件C表示“样本平均数与总体平均数之差的绝对值不小于1”因为所以事件C包含的可能结果有4种,-11分因此-13分21、解:(1)-3分 ,且 -5分 -6分(2)-8分又有-10分-12分-14分22、解:(1) , 递减区间为-7分(2) 当时,方程有且仅有一个根 即方程有且仅有一个根-9分令-10分所以方程有且仅有一个根-11分函数的图像有且仅有一个交点-12分所以-14分