1、平面与平面垂直的性质【教学目标】1.探究平面与平面垂直的性质定理,进一步培养学生的空间想象能力.2.面面垂直的性质定理的应用,培养学生的推理能力.3.通过平面与平面垂直的性质定理的学习,培养学生转化的思想.【重点难点】教学重点:平面与平面垂直的性质定理.教学难点:平面与平面性质定理的应用.【课时安排】1课时【教学过程】复习(1)面面垂直的定义.如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.(2)面面垂直的判定定理.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:.两个平面垂直的判定定理图形表述为:图1导入
2、新课如图2,长方体ABCDABCD中,平面AADD与平面ABCD垂直,直线AA垂直于其交线AD.平面AADD内的直线AA与平面ABCD垂直吗?图2推进新课新知探究提出问题如图3,若,=CD,AB,ABCD,ABCD=B.请同学们讨论直线AB与平面的位置关系.图3用三种语言描述平面与平面垂直的性质定理,并给出证明.设平面平面,点P,Pa,a,请同学们讨论直线a与平面的关系.分析平面与平面垂直的性质定理的特点,讨论应用定理的难点.总结应用面面垂直的性质定理的口诀.活动:问题引导学生作图或借助模型探究得出直线AB与平面的关系.问题引导学生进行语言转换.问题引导学生作图或借助模型探究得出直线a与平面的
3、关系.问题引导学生回忆立体几何的核心,以及平面与平面垂直的性质定理的特点.问题引导学生找出应用平面与平面垂直的性质定理的口诀.讨论结果:通过学生作图或借助模型探究得出直线AB与平面垂直,如图3.两个平面垂直的性质定理用文字语言描述为:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一平面.两个平面垂直的性质定理用图形语言描述为:如图4.图4两个平面垂直的性质定理用符号语言描述为:AB.两个平面垂直的性质定理证明过程如下:图5如图5,已知,=a,AB,ABa于B.求证:AB.证明:在平面内作BECD垂足为B,则ABE就是二面角CD的平面角.由,可知ABBE.又ABCD,BE与CD是
4、内两条相交直线,AB.问题也是阐述面面垂直的性质,变为文字叙述为:求证:如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.下面给出证明.如图6,已知,P,Pa,a.求证:a.图6证明:设=c,过点P在平面内作直线bc,,b.而a,Pa,经过一点只能有一条直线与平面垂直,直线a应与直线b重合.那么a. 利用“同一法”证明问题,主要是在按一般途径不易完成问题的情形下所采用的一种数学方法,这里要求做到两点.一是作出符合题意的直线b,不易想到,二是证明直线b和直线a重合,相对容易些.点P的位置由投影所给的图及证明过程可知,可以在交线上,也可以不在交线上. 我认为立
5、体几何的核心是:直线与平面垂直,因为立体几何的几乎所有问题都是围绕它展开的,例如它不仅是线线垂直与面面垂直相互转化的桥梁,而且由它还可以转化为线线平行,即使作线面角和二面角的平面角也离不开它.两个平面垂直的性质定理的特点就是帮我们找平面的垂线,因此它是立体几何中最重要的定理. 应用面面垂直的性质定理口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.应用示例例1 如图7,已知,a,a,试判断直线a与平面的位置关系.图7解:在内作垂直于与交线的垂线b,b.a,ab.a,a.变式训练 如图8,已知平面交平面于直线a.、同垂直于平面,又同平行于直线b.求证:(1)a;(2)b. 图8 图9证明:
6、如图9,(1)设=AB,=AC.在内任取一点P并在内作直线PMAB,PNAC.,PM.而a,PMa.同理,PNa.又PM,PN,a.(2)在a上任取点Q,过b与Q作一平面交于直线a1,交于直线a2.b,ba1.同理,ba2.a1、a2同过Q且平行于b,a1、a2重合.又a1,a2,a1、a2都是、的交线,即都重合于a.ba1,ba.而a,b.点评:面面垂直的性质定理作用是把面面垂直转化为线面垂直,见到面面垂直首先考虑利用性质定理,其口诀是:“见到面面垂直,立即在一个平面内作交线的垂线”.例2 如图10,四棱锥PABCD的底面是AB=2,BC=的矩形,侧面PAB是等边三角形,且侧面PAB底面AB
7、CD. 图10 图11(1)证明侧面PAB侧面PBC;(2)求侧棱PC与底面ABCD所成的角;(3)求直线AB与平面PCD的距离.(1)证明:在矩形ABCD中,BCAB,又面PAB底面ABCD,侧面PAB底面ABCD=AB,BC侧面PAB.又BC侧面PBC,侧面PAB侧面PBC.(2)解:如图11,取AB中点E,连接PE、CE,又PAB是等边三角形,PEAB.又侧面PAB底面ABCD,PE面ABCD.PCE为侧棱PC与底面ABCD所成角.PE=BA=,CE=,在RtPEC中,PCE=45为所求.(3)解:在矩形ABCD中,ABCD,CD侧面PCD,AB侧面PCD,AB侧面PCD.取CD中点F,
8、连接EF、PF,则EFAB.又PEAB,AB平面PEF.又ABCD,CD平面PEF.平面PCD平面PEF.作EGPF,垂足为G,则EG平面PCD.在RtPEF中,EG=为所求.变式训练 如图12,斜三棱柱ABCA1B1C1的棱长都是a,侧棱与底面成60角,侧面BCC1B1面ABC.求平面AB1C1与底面ABC所成二面角的大小.图12活动:请同学考虑面BB1C1C面ABC及棱长相等两个条件,师生共同完成表述过程,并作出相应辅助线.解:面ABC面A1B1C1,则面BB1C1C面ABC=BC,面BB1C1C面A1B1C1=B1C1,BCB1C1,则B1C1面ABC.设所求两面交线为AE,即二面角的棱
9、为AE,则B1C1AE,即BCAE.过C1作C1DBC于D,面BB1C1C面ABC,C1D面ABC,C1DBC.又C1CD=60,CC1=a,故CD=,即D为BC的中点.又ABC是等边三角形,BCAD.那么有BC面DAC1,即AE面DAC1.故AEAD,AEAC1,C1AD就是所求二面角的平面角.C1D=a,AD=a,C1DAD,故C1AD=45.点评:利用平面与平面垂直的性质定理,找出平面的垂线是解决问题的关键.拓展提升如图13,在三棱锥SABC中,侧面SAB与侧面SAC均为等边三角形,BAC=90,O为BC中点.(1)证明SO平面ABC;(2)求二面角ASCB的余弦值. 图13 图14(1
10、)证明:如图14,由题设,知AB=AC=SB=SC=SA.连接OA,ABC为等腰直角三角形,所以OA=OB=OC=SA,且AOBC.又SBC为等腰三角形,故SOBC,且SO=SA.从而OA2+SO2=SA2.所以SOA为直角三角形,SOAO.又AOBC=O,所以SO平面ABC.(2)解:如图19,取SC中点M,连接AM、OM,由(1),知SO=OC,SA=AC,得OMSC,AMSC.所以OMA为二面角ASCB的平面角.由AOBC,AOSO,SOBC=O,得AO平面SBC.所以AOOM.又AM=SA,故sinAMO=.所以二面角ASCB的余弦值为.课堂小结知识总结:利用面面垂直的性质定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业课本习题2.3 B组3、4.