1、 7.3 实践与探索第一课时 教学目的 通过学生积极思考、互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。 重点、难点 1,重点:让学生实践与探索,运用二元一次方程组解决有关配套问题的应用题。 2难点:寻找相等关系以及方程组的整数解问题。 教学过程 一、复习 列二元一次方程组解决实际问题的步骤是什么?其中什么是关键? 二、新授 问题1第35页实践与探索中的第一个问题。 学生阅读教科书并与同伴讨论、交流,探索解题方法,鼓励学生多角度地思考,只要学生的方法有道理,就要给予肯定和鼓励。鼓励学生进行质问和大胆创新。 学
2、生有困难,教师加以引导: 1本题有哪些已知量? (1)共有白卡纸20张。 (2)一张白卡纸可以做盒身2个或盒底盖3个。 (3)1个盒身与2个盒底盖配成一套。 2求什么? (1)用几张白卡纸做盒身?几张白卡纸做盒底盖? 3若设用x张白卡纸做盒身,y张白卡纸做盒底盖。 那么可做盒身多少个?盒底盖多少个? 2x个盒身,3y个盒底盖 4找出2个等量关系。 (1)用做盒身的白卡纸张数十用做盒底盖的自卡纸张数:20。 (2)已知(3)可知盒底盖的个数应该是盒身的2倍,才能使盒身和盒底盖正好配套。 根据题意,得 x+y20 3y=22x 解出这个方程组。 以上结果表明不允许剪开白卡纸,不能找到符合题意的分法
3、。 如果允许剪开一张白卡纸,怎样才能既符合题意且能充分利用白卡纸呢? 用8张白卡纸做盒身,可做82二16(个) 用1l张白卡纸做盒底盖,可做31133(个) 将余下的l张白卡纸剪成两半,一半做盒身,另一半做盒底,一共 可做17个包装盒,较充分地利用了材料。 三、巩固练习 某农场300名职工耕种5l公顷土地,计划种植水稻、棉花和蔬菜,已知种植各种植物每公顷所需劳动力人数及投入的设备资金如下表:农作物品种水稻棉花蔬菜每公顷需劳动力4人8人5人每公顷需投入资金1万元1万元2万元 已知该农场计划在设备上投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的设备资金正好够用?
4、 先让学生自主探索,与伙伴交流。 对有困难的学生教师加以引导。(提问式) 1本题中有哪些已知量? (1)安排种三种农作物的人数共300名; (2)安排种三种农作物的土地共51公顷; (3)每种农作物每公顷所需要的职工数; (4)每种农作物每公顷需要投入的资金; (5)三种农作物需要的资金和为67万元。 2求什么? 分别安排多少公顷种水稻,多少公顷种棉花,多少公顷种蔬菜? 如果设安排x公顷种水稻,y公顷种棉花,那么由已知(2)可知,种蔬菜有(51-x-y)公顷。 这样根据已知,(3)可得种水稻4x人,棉花8y人,蔬菜5(51-x-y)人. 根据已知(4)可得,种三种农作物所需的资金分别为x万元、y万元 2(51-x-y)万元已知量中的(1)、(5)就是两个等量关系 因此,列方程组 4x+8y+5(51-x-y)300 x+y+2(51-x-y)=67 本题也可以列三元一次方程组求解,若有学生尝试用这种方法,应 给予鼓励,鼓励有余力的学生自己探索、研究、体会,不要求统一规定。 四、作业教科书习题7.3,第1题。 2