1、第1讲随机事件的概率基础巩固题组(建议用时:40分钟)一、选择题1(2015襄阳模拟)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向事件“甲向南”与事件“乙向南”是()A互斥但非对立事件 B对立事件C相互独立事件 D以上都不对解析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.答案A2从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的不是一等品”的概率为()A0.7 B0.65 C0.35 D
2、0.3解析事件“抽到的不是一等品”与事件A是对立事件,由于P(A)0.65,所以由对立事件的概率公式得“抽到的不是一等品”的概率为P1P(A)10.650.35.答案C3从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A至少有一个红球与都是红球B至少有一个红球与都是白球C至少有一个红球与至少有一个白球D恰有一个红球与恰有二个红球解析对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立答案D4对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图根据标准,产品长度在区间20,25)上为一等品,在区
3、间15,20)和25,30)上为二等品,在区间10,15)和30,35上为三等品用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()A0.09 B0.20 C0.25 D0.45解析由频率分布直方图可知,一等品的频率为0.0650.3,三等品的频率为0.0250.0350.25,所以二等品的频率为1(0.30.25)0.45.用频率估计概率可得其为二等品的概率为0.45.答案D5甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是()A. B. C. D.解析乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为.答案A二、填空题6在200件产品中,有192件
4、一级品,8件二级品,则下列事件:在这200件产品中任意选出9件,全部是一级品;在这200件产品中任意选出9件,全部是二级品;在这200件产品中任意选出9件,不全是二级品其中_是必然事件;_是不可能事件;_是随机事件答案7抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A),P(B),则出现奇数点或2点的概率为_解析因为事件A与事件B是互斥事件,所以P(AB)P(A)P(B).答案8口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率为0.28,若红球有21个,则黑球有_个解析摸出黑球的概率为10.420.280.30,
5、口袋内球的个数为210.4250,所以黑球的个数为500.3015.答案15三、解答题9(2014陕西卷)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率解(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4
6、000元”,以频率估计概率得P(A)0.15,P(B)0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)P(B)0.150.120.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.11 000100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.212024(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为0.24,由频率估计概率得P(C)0.24. 10一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球从中随机取出1球,求:(
7、1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率解法一(利用互斥事件求概率)记事件A1任取1球为红球,A2任取1球为黑球,A3任取1球为白球,A4任取1球为绿球,则P(A1),P(A2),P(A3),P(A4),根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,得(1)取出1球为红球或黑球的概率为P(A1A2)P(A1)P(A2).(2)取出1球为红球或黑球或白球的概率为P(A1A2A3)P(A1)P(A2)P(A3).法二(利用对立事件求概率)(1)由法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1A2的对立事件为A3A4,所以取
8、出1球为红球或黑球的概率为P(A1A2)1P(A3A4)1P(A3)P(A4)1.(2)因为A1A2A3的对立事件为A4,所以取出1球为红球或黑球或白球的概率为P(A1A2A3)1P(A4)1.能力提升题组(建议用时:25分钟)11在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()AAB与C是互斥事件,也是对立事件BBC与D是互斥事件,也是对立事件CAC与BD是互斥事件,但不是对立事件DA与BCD是互斥事件,也是对立事件解析由于A,B,C,D彼此互斥,且ABCD是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任
9、何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件故选D.答案D12在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是()A至多有一张移动卡 B恰有一张移动卡C都不是移动卡 D至少有一张移动卡解析因为1,而“2张全是移动卡”的对立事件是“至多有一张移动卡”,故选A.答案A13某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示现随机选取一个成员,他属于至少2个小组的概率是_,他属于不超过2个小组的概率是_解析“
10、至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”故他属于不超过2个小组的概率是P1.答案14如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10202030304040505060选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了
11、尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有121216444(人),用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为所用时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站由(2)知P(A1)0.10.20.30.6,P(A2)0.10.40.5,P(A1)P(A2),甲应选择L1.同理,P(B1)0.10.20.30.20.8,P(B2)0.10.40.40.9,P(B1)P(B2),乙应选择L2.