ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:124.36KB ,
资源ID:1231898      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1231898-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年高中新教材人教A版数学必修第二册 10-2 事件的相互独立性 教案 (1) WORD版含答案.docx)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年高中新教材人教A版数学必修第二册 10-2 事件的相互独立性 教案 (1) WORD版含答案.docx

1、10.2 事件的相互独立性 本节普通高中课程标准数学教科书-必修二(人教A版)第十章10.2 事件的相互独立性,本节课主要事在已学互斥事件和对立事件基础上进一步了解事件之间的关系,相互独立性是另一种重要的事件关系,注意对概率思想方法的理解。发展学生的直观想象、逻辑推理、数学建模的核心素养。课程目标学科素养A.理解两个事件相互独立的概念B能进行一些与事件独立有关的概念的计算C. 通过对实例的分析,会进行简单的应用.1.数学建模: 相互独立事件的判定2.逻辑推理:相互独立事件与互斥事件的关系3.数学运算:相互独立事件概率的计算4.数据抽象:相互独立事件的概念1.教学重点:理解两个事件相互独立的概念

2、2.教学难点:事件独立有关的概念的计算 多媒体教学过程教学设计意图核心素养目标一、 探究新知 前面我们研究过互斥事件,对立事件的概率性质,还研究过和事件的概率计算方法,对于积事件的概率,你能提出什么值得研究的问题吗? 我们知道积事件AB就是事件A与事件B同时发生,因此,积事件AB发生的概率一定与事件A,B发生的概率有关系,那么这种关系会是怎样的呢? 下面我们来讨论一类与积事件有关的特殊问题。思考1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币反面朝上”.事件A发生与否会影响事件B发生的概率吗?分别计算P(A),P(B),P(AB),看看它们之间有什么关系?用1表示硬

3、币“正面朝上”,用0表示硬币“反面朝上”,则样本空间为=(1,1),(1,0),(0,1),(0,0),包含4个等可能的样本点.而A=(1,1),(1,0),B=(1,0),(0,0),所以AB=(1,0).由古典概型概率计算公式,得P(A)=P(B)=0.5, P(AB)=0.25.于是P(AB)=P(A)P(B).积事件AB的概率P(AB)恰好等于P(A)与P(B)的乘积.分析:因为两枚硬币分别抛掷,第一枚硬币的抛掷结果与第二枚硬币的抛掷结果互相不受影响,所以事件A发生与否不影响事件B发生的概率思考2:一个袋子中装有标号分别是1,2,3,4的4个球,除标号外没有其他差异.采用有放回方式从袋

4、中依次任意摸出两球.设A=“第一次摸到球的标号小于3”,B=“第二次摸到球的标号小于3”.事件A发生与否会影响事件B发生的概率吗?分析:对于试验2,因为是有放回摸球,第一次摸球的结果与第二次摸球的结果互相不受影响,所以事件A发生与否也不影响事件B发生的概率.分别计算P(A),P(B),P(AB),看看它们之间有什么关系?样本空间=(m,n)|m,n1,2,3,4包含16个等可能的样本点.而A=(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), B=(1,1),(1,2),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2), AB

5、=(1,1),(1,2),(2,1),(2,2),于是也有P(AB)=P(A)P(B).积事件AB的概率P(AB)也等于P(A),P(B)的乘积.相互独立事件的定义: 设A,B两个事件,如果事件A是否发生对事件B发生的概率没有影响(即P(AB)=P(A)P(B), 则称事件A与事件B相互独立.简称独立.显然:(1)必然事件W 及不可能事件与任何事件A相互独立. (2)若事件A与B相互独立, 则以下三对事件也相互独立: 例如证1.判断下列事件是否为相互独立事件.篮球比赛的“罚球两次”中, 事件A:第一次罚球,球进了. 事件B:第二次罚球,球进了.袋中有三个红球,两个白球,采取不放回的取球.事件A

6、:第一次从中任取一个球是白球.事件B:第二次从中任取一个球是白球.袋中有三个红球,两个白球,采取有放回的取球. 事件A:第一次从中任取一个球是白球. 事件B:第二次从中任取一个球是白球.是;是;不是2.下列事件中,A,B是相互独立事件的是()A一枚硬币掷两次,A第一次为正面,B第二次为反面B袋中有2白,2黑的小球,不放回地摸两球,A第一次摸到白球,B第二次摸到白球C掷一枚骰子,A出现点数为奇数,B出现点数为偶数DA人能活到20岁,B人能活到50岁答案:A解析:把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C

7、,A,B应为互斥事件,不相互独立;D是条件概率,事件B受事件A的影响3.抛掷一枚均匀的骰子一次,记事件A=“出现偶数点”,B=“出现3点或6点”,则事件A与B的关系是 ()A.互斥 B.相互独立C.既相互互斥又相互独立事件D.既不互斥又不相互独立事件答案:B解析:因为A=2,4,6,B=3,6,AB=6,所以P(A)=12,P(B)=13,P(AB)=16=1213,所以A与B相互独立.注:互斥事件和相互独立事件是两个不同概念:两个事件互斥是指这两个事件不可能同时发生;两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响。相互独立事件的判断方法1.定义法:P(AB)=P(A)P

8、(B)2.直接法:由事件本身的性质直接判断两个事件的发生是否相互影响。例1.一个袋子中有标号分别为1,2,3,4的4个球,除标号外没有其他差异,采用不放回方式从中任意摸球两次,设事件A=“第一次摸出球的标号小于3”,事件B=“第二次摸出球的标号小于3”,那么事件A与事件B是否相互独立?解:因为样本空间=(m,n)|m,n1,2,3,4,且mn,共有12个样本点 A=(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),B=(1,2),(2,1),(3,1),(3,2),(4,1),(4,2),AB=(1,2),(2,1)所以此时P(AB)P(A)P(B),因此,事件A与事件B

9、不独立.例2.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,求下列事件的概率:(1)两人都中靶;(2)恰好有一人中靶;(3)两人都脱靶;(4)至少有一人中靶.解:设“甲中靶”, “乙中靶”,则“甲脱靶”,“乙脱靶”,由于两个人射击的结果互不影响,所以A与B相互独立,A与,与B,与都相互独立由已知可得,.(1) “两人都中靶”,由事件独立性的定义得(2)“恰好有一人中靶” ,且与互斥根据概率的加法公式和事件独立性定义,得(3)事件“两人都脱靶”,所以(4)方法1:事件“至少有一人中靶”,且AB,与两两互斥,所以方法2:由于事件“至少有一人中靶”的对立事件是“两人都

10、脱靶”根据对立事件的性质,得事件“至少有一人中靶”的概率为例3 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲,乙各猜一个成语,已知甲每轮猜对的概率为0.75,乙每轮猜对的概率为2/3.在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求“星队”在两轮活动中猜对3个成语的概率分析:两轮活动猜对3个成语,相当于事件“甲猜对1个,乙猜对2个”、事件“甲猜对2个,乙猜对1个”的和事件发生,解:设A1,A2分别表示甲两轮猜对1个,2个成语的事件,B1,B2分别表示乙两轮猜对1个,2个成语的事件,根据独立性假定,得设A=“两轮活动星队猜对3个成语”,则A=A1B2A2B1,且A1B2与A2B

11、1互斥,A1与B2,A2与B1分别相互独立,所以P(A)=P(A1B2)+P(A2B1)=P(A1)P(B2)+P(A2)P(B1)因此,“星队”在两轮活动中猜对3个成语的概率是例4.甲, 乙两人同时向敌人炮击,已知甲击中敌机的概率为0.6, 乙击中敌机的概率为0.5, 求敌机被击中的概率.解: 依题设 A= 甲击中敌机 ,B= 乙击中敌机 , C=敌机被击中 由于 甲,乙同时射击,甲击中敌机并不影响乙击中敌机的可能性,所以 A与B 独立,进而,由知识回顾,提出问题,类比思考。发展学生数学抽象、直观想象和逻辑推理的核心素养。 通过具体问题的事件分析,归纳出相互独立事件的概念。发展学生数学抽象、

12、逻辑推理的核心素养。通过实例分析,让学生掌握相互独立事件的判定及概率计算,提升推理论证能力,提高学生的数学抽象、数学建模及逻辑推理的核心素养。三、达标检测1.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.12B.512C.14D.16答案:B 解析:恰有一个一等品即有一个是一等品、一个不是一等品,故所求概率为231-34+1-2334=2314+1334=212+312=512,故选B.2.甲、乙两人各进行1次射击,如果两人击中目标的概率都是0.7,则其中恰有1人击中目标的概率是()A.0.49 B.0.42 C.0.7 D.0.91解析:记甲击中目标为事件A,乙击中目标为事件B,且A,B相互独立.则恰有1人击中目标为A

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3