1、 1.4 数学归纳法 同步练习(时间:50分钟满分:75分)一、选择题(每小题5分,共25分)1 用数学归纳法证明命题“当n是正奇数时,xnyn能被xy整除”,在第二步时,正确的证法是 ()A假设nk(kN),证明nk1命题成立B假设nk(k是正奇数),证明nk1命题成立C假设n2k1(kN),证明nk1命题成立D假设nk(k是正奇数),证明nk2命题成立2 用数学归纳法证明“11)”时,由nk(k1)不等式成立,推证nk1时,左边应增加的项数是 ()A2k1 B2k1C2k D2k13 对于不等式n1(nN*),某同学用数学归纳法的证明过程如下:(1)当n1时,11,不等式成立(2)假设当n
2、k(kN*)时,不等式成立,即k1,则当nk1时,(k1)1,当nk1时,不等式成立,则上述证法 ()A过程全部正确Bn1验得不正确C归纳假设不正确D从nk到nk1的推理不正确4用数学归纳法证明“n2(n1)3(n2)3(nN*)能被9整除”,要利用归纳假设证nk1时的情况,只需展开 ()A(k3)3 B(k2)3 C(k1)3 D(k1)3(k2)35用数学归纳法证明不等式,11,1,12,1,由此猜测第n个不等式为_(nN*)8 已知整数对的序列如下:(1,1),(1,2), (2,1),(1,3),(2,2),(3,1),(1,4), (2,3),(3,2),(4,1),(1,5),(2
3、,4),则第60个数对是_9如下图,在杨辉三角形中,从上往下数共有n(nN*)行,在这些数中非1的数字之和是_111121133114641三、解答题(共3小题,共34分)10(本小题满分10分)试证:当nN*时,f(n)32n28n9能被64整除11(本小题满分12分)已知数列an的各项都是正数,且满足:a01,an1an(4an)(nN)证明:anan1.答案:18解析:本题规律:211;31221;4132231;514233241;一个整数n所拥有数对为(n1)对设123(n1)60,60,n11时还多5对数,且这5对数和都为12,12111210394857,第60个数对为(5,7)
4、答案:(5,7)9解析:所有数字之和Sn202222n12n1,除掉1的和2n1(2n1)2n2n.答案:2n2n三、解答题(共3小题,共34分)10证明:证法一:(1)当n1时,f(1)64,命题显然成立(2)假设当nk(kN*,k1)时,f(k)32k28k9能被64整除当nk1时,由于32(k1)28(k1)99(32k28k9)98k998(k1)99(32k28k9)64(k1),即f(k1)9f(k)64(k1),nk1时命题也成立根据(1)、(2)可知,对于任意nN*,命题都成立证法二:(1)当n1时f(1)64命题显然成立(2)假设当nk(kN*,k1)时,f(k)32k28k
5、9能被64整除由归纳假设,设32k28k964m(m为大于1的自然数),将32k264m8k9代入到f(k1)中得f(k1)9(64m8k9)8(k1)964(9mk1),nk1时命题也成立根据(1)(2)知,对于任意nN*,命题都成立11(本小题满分12分)已知数列an的各项都是正数,且满足:a01,an1an(4an)(nN)证明:anan12(nN)证明:证法一:用数学归纳法证明:(1)当n0时,a01,a1a0(4a0),所以a0a12,命题正确(2)假设nk1(kN*)时命题成立,即ak1ak2.则当nk时,akak1ak1(4ak1)ak(4ak)2(ak1ak)(ak1ak)(a
6、k1ak)(ak1ak)(4ak1ak)而ak1ak0,所以akak10.又ak1ak(4ak) 4(ak2)22.所以nk时命题成立由(1)(2)可知,对一切nN时有anan12.证法二:用数学归纳法证明:(1)当n0时,a01,a1a0(4a0),所以0a0a12;(2)假设nk1(kN*)时有ak1 ak2成立,令f(x)x(4x),f(x)在0,2上单调递增,所以由假设有:f (ak1)f(ak)f(2),即ak1(4ak1)ak(4ak)2(42),也即当nk时,akak12成立所以对一切nN,有akak12.12(本小题满分12分)(2011开封调研)在数列an,bn中,a12,b
7、14,且an,bn,an1成等差数列,bn,an1,bn1成等比列(nN*),求a2,a3,a4与b2,b3,b4的值,由此猜测an,bn的通项公式,并证明你的结论解:由条件得2bnanan1,abnbn1.又a12,b14,由此可得a26,b29,a312,b316,a420,b425,猜测ann(n1),bn(n1)2.用数学归纳法证明:当n1时,a12,b14,结论成立假设当nk(kN*)时结论成立,即akk(k1),bk(k1)2,那么当nk1时,ak12bkak2(k1)2k(k1)(k1)(k1)1,bk1(k2)2(k1)12,当nk1时,结论也成立由知,ann(n1),bn(n1)2对一切正整数都成立