ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:216KB ,
资源ID:122961      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-122961-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2015年高中苏教版数学选修1-1名师导学:第2章 第6课时 双曲线的标准方程 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2015年高中苏教版数学选修1-1名师导学:第2章 第6课时 双曲线的标准方程 .doc

1、第6课时双曲线的标准方程 教学过程一、 问题情境问题1前面学习椭圆时研究了椭圆的哪些问题?解椭圆的标准方程及椭圆的标准方程的求法,并利用椭圆的标准方程研究了椭圆的几何性质.问题2下面我们来学习双曲线,应该先研究什么问题呢?解先研究双曲线的标准方程,如何求双曲线的标准方程呢?如何建立直角坐标系?二、 数学建构1.标准方程的推导设双曲线的焦距为2c,双曲线上任意一点到焦点F1,F2的距离的差的绝对值等于常数2a(ca0).类比求椭圆标准方程的方法由学生来建立直角坐标系.以直线F1F2为x轴,线段F1F2的中垂线为y轴建立直角坐标系,则F1(-c,0),F2(c,0).设P(x,y)为双曲线上任意一

2、点,由双曲线定义知|PF1-PF2|=2a,即|-|=2a.1在化简到(c2-a2)x2-a2y2=a2(c2-a2)时,结合双曲线定义中2a0,b0,c2=a2+b2).若焦点在y轴上,则焦点是F1(0,-c),F2(0,c),由双曲线定义得|-|=2a,与焦点在x轴上的双曲线方程|-|=2a比较,它们的结构有什么异同点?解结构相同,只是字母x,y交换了位置.故求焦点在y轴上的双曲线方程时,只需把焦点在x轴上的双曲线标准方中x,y互换即可,易得-=1(其中a0,b0,c2=a2+b2).2.双曲线标准方程的特点(1)双曲线的标准方程分焦点在x轴上和焦点在y轴上两种:当焦点在x轴上时,双曲线的

3、标准方程为-=1(a0,b0);当焦点在y轴上时,双曲线的标准方程为-=1(a0,b0).(2)a,b,c有关系式c2=a2+b2成立,且a0,b0,c0,其中a与b的大小关系可以为a=b,ab.3.根据双曲线的标准方程判断焦点的位置从椭圆的标准方程不难看出,椭圆的焦点位置可由方程中含字母x2,y2项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴,而双曲线是根据项的正负来判断焦点所在的位置,即x2项的系数是正的,那么焦点在x轴上;y2项的系数是正的,那么焦点在y轴上.三、 数学运用【例1】求适合下列条件的双曲线的标准方程: (1)经过点A(0,2),B(2,-5);(2)a=

4、2,且经过点P(2,-5).2(见学生用书P25)处理建议类比椭圆标准方程的求法,用待定系数法可分别设出焦点在x轴上和焦点在y轴上的椭圆的标准方程;也可直接设其方程为mx2+ny2=1(mn0).3规范板书(1)解法一设双曲线的方程为mx2+ny2=1(mn0,所以x0.故所求曲线的方程为-=1(x0).题后反思解此类实际问题的关键是“能根据条件联想、构造出合适的数学模型”,这种构造转化是以熟练掌握基础知识为前提的.对圆锥曲线而言,必须熟悉其相关定义.定义既是建构数学知识的基石,也是解答数学问题的重要工具.因此,在研究某些几何或实际问题时,若能活用双曲线的定义,则不仅可深化学生对双曲线概念的理

5、解,还能提高其分析问题、解决问题的能力.本例亦可扩展为“确定爆炸点的位置”,参见本课时学生用书(课后练习本)第12题.四、 课堂练习1.写出下列曲线的焦点坐标:(1)-=1;(2)3x2-y2=1;(3)-=-1;(4)+=1;(5)3x2+y2=12.解(1)(,0);(2);(3)(0,4);(4)(1,0);(5)(0,2).2.根据下列条件,求双曲线的标准方程:(1)与双曲线-=1有公共焦点,且过点(3,2);(2)过点P1(3,-4)和P2 ,且中心在坐标原点,焦点在坐标轴上.解法一(1)设双曲线的方程为-=1(a0,b0),则解得 所以双曲线的标准方程为-=1.(2)若双曲线的焦点

6、在y轴上,设其标准方程为-=1(a0,b0).因为点P1,P2在双曲线上,所以 解得 所以所求双曲线的标准方程为-=1.若双曲线的焦点在x轴上,设其标准方程为-=1(a0,b0).依题意得此时无解.综上,双曲线的标准方程为-=1.解法二(1) 设双曲线的方程为-=1(16-k0,4+k0),所以-=1,解得k=4.所以双曲线的标准方程为-=1.(2) 设双曲线的方程为mx2-ny2=1(mn0).依题意得解得 故所求双曲线的标准方程为-=1.3.已知关于x,y的二次方程(4-m)x2+(16-m)y2=m2-14m+48表示双曲线,则m的取值范围是m|4m6或6m8或8m16.提示由题意知解得 所以4m6或6m8或8m16.4.若椭圆+=1与双曲线x2-=1有相同的焦点,且椭圆与双曲线交于点P,求椭圆及双曲线的方程.解两方程联立消去y,得x2=m+b,代入P,得=m+b,即8m=b.又椭圆与双曲线有相同的焦点,所以10-m=1+b,即解方程组得故椭圆的方程为+y2=1,双曲线的方程为x2-=1.五、 课堂小结1. 双曲线的标准方程和标准方程的求法(定义法、待定系数法).2. 在解决双曲线的有关问题时可与椭圆中的相应问题进行类比来解决.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3