1、课时作业(二十九)对数的运算法则(1) 练基础1若lg a与lg b互为相反数,则()Aab0 Bab1Cab0 D12设lg 2a,lg 3b,则()A BC D3log242log243log244等于()A1B2C24D4计算:log153log62log155log63()A2 B0 C1 D25若lg xlg ya,则lg lg ()A3a Ba Ca D6(多选)已知x,y为正实数,则下列化简错误的是()Alg (x2y)(lg x)2lg yBlg (x)lg xlg yCeln xln yxyDeln xln yxy7823lg 2lg 25的值为_8已知loga2m,loga
2、3n,则loga18_(用m,n表示).9(1)2log214 lg 20lg 2;(2)log5352log5log57log51.8.10已知loga2m,loga3n.求a2mn的值提能力11已知log3xm,log3yn,则log3用m,n可表示为()Amn BmnC Dmn12(多选)若10a4,10b25,则()Aab2 Bba1Cab8lg22 Dbalg 613计算:lg 2log23log2ln 1_14若lg a,lg b是方程2x24x10的两个根,则的值为_15求下列各式的值:(1);(2)lg 5lg 20lg 2lg 50lg 25.培优生16已知loga(x24)
3、loga(y21)loga5loga(2xy1)(a0,且a1),求log8的值课时作业(二十九)对数的运算法则(1)1解析:lg a与lg b互为相反数,lg alg b0,即lg (ab)0,ab1.答案:B2解析:.答案:C3解析:log242log243log244log24(234)log24241.答案:A4解析:原式log15(35)log6(23)110.答案:B5解析:由对数的运算性质可知,原式3(lg xlg 2)3(lg ylg 2)3(lg xlg y)3a,故选A.答案:A6解析:A中,lg (x2y)lg x2lg y2lg |x|lg y,故A不正确;B中,lg
4、lg xlg lg xlg y,故B正确;C中,eln xln yeln xeln yxy,故C不正确;D中,eln xln y(eln x)ln yxln y,故D不正确答案:ACD7解析:原式23lg 2lg 52215.答案:58解析:loga18loga(232)loga2loga32loga22loga3m2n.答案:m2n9解析:(1)原式12.(2)原式log5(57)2(log57log53)log57log5log55log572log572log53log572log53log552.10解析:因为loga2m,loga3n,所以am2,an3.所以a2mna2man223
5、.11解析:log3log3log3 log3xlog3(yy)log3xlog3ymn.答案:D12解析:由10a4,10b25,得alg 4,blg 25,ablg 4lg 25lg 1002,balg 25lg 4lg ,lg 101lg lg 6balg 6ab4lg 2lg 54lg 2lg 48lg22,故正确的有ACD.答案:ACD13解析:lg log2ln 1(lg 5lg 2)34.答案:14解析:由题意知lg alg b2,lg alg b(lg alg b)2(lg alg b)24lg alg b442.答案:215解析:(1)1.(2) lg 5lg 20lg 2l
6、g 50lg 25lg 5lg (225)lg 2lg (252)lg 52lg 5(2lg 2lg 5)lg 2(lg 22lg 5)2lg 52lg 2lg 5(lg 5)2(lg 2)22lg 2lg 52lg 5(lg 5)2(lg 2)22lg 5(lg 5lg 2)(lg 5lg 2)2lg 5lg 5lg 22lg 5(lg 2lg 5)1.16解析:由对数的运算法则,可将等式化为loga(x24)(y21)loga5(2xy1),(x24)(y21)5(2xy1).整理,得x2y2x24y210xy90,配方,得(xy3)2(x2y)20,.log8log8log2321log22.6