收藏 分享(赏)

《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc

上传人:高**** 文档编号:122405 上传时间:2024-05-25 格式:DOC 页数:7 大小:203KB
下载 相关 举报
《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc_第1页
第1页 / 共7页
《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc_第2页
第2页 / 共7页
《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc_第3页
第3页 / 共7页
《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc_第4页
第4页 / 共7页
《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc_第5页
第5页 / 共7页
《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc_第6页
第6页 / 共7页
《创新设计》2016届 数学一轮(理科) 苏教版 江苏专用 课时作业 第九章 平面解析几何-8 WORD版含答案.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家第8讲曲线与方程基础巩固题组(建议用时:40分钟)一、填空题1(2015石家庄质检)已知命题“曲线C上的点的坐标是方程f(x,y)0的解”是正确的,给出下列命题:满足方程f(x,y)0的点都在曲线C上;方程f(x,y)0是曲线C的方程;方程f(x,y)0所表示的曲线不一定是C.则上述命题中正确的序号是_解析曲线C可能只是方程f(x,y)0所表示的曲线上的某一小段,因此只有正确答案2设圆C与圆x2(y3)2 1外切,与直线y0相切,则C的圆心轨迹为_解析设圆C的半径为r,则圆心C到直线y0的距离为r,由两圆外切可得,圆心C到点(0,3)的距离为r1,也就是说,圆心

2、C到点(0,3)的距离比到直线y0的距离大1,故点C到点(0,3)的距离和它到直线y1的距离相等,符合抛物线的特征,故点C的轨迹为抛物线答案抛物线3(2015泰州模拟)已知M(2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为_解析MN的中点为原点O,易知OPMN2,P的轨迹是以原点O为圆心,以r2为半径的圆,除去与x轴的两个交点答案x2y24(x2)4(2015珠海模拟)已知点A(1,0),直线l:y2x4,点R是直线l上的一点,若,则点P的轨迹方程为_解析设P(x,y),R(x1,y1),由知,点A是线段RP的中点,即点R(x1,y1)在直线y2x4上,y12x14

3、,y2(2x)4,即y2x.答案y2x5已知两定点A(2,0)、B(1,0),如果动点P满足PA2PB,则点P的轨迹所包围的图形的面积为_解析设P(x,y),由PA2PB,得2,3x23y212x0,即x2y24x0.P的轨迹为以(2,0)为圆心,半径为2的圆即轨迹所包围的面积等于4.答案46若动点P在抛物线y2x21上运动,则点P与点A(0,1)所连线段的中点M的轨迹方程是_解析设M(x,y),P(x0,y0),M为PA中点,x,y.x02x,y02y1,代入y2x21,得y4x2.答案y4x27(2015天津津南一模)平面直角坐标系中,已知两点A(3,1),B(1,3),若点C满足12(O

4、为原点),其中1,2R,且121,则点C的轨迹是_解析设C(x,y),因为12,所以(x,y)1(3,1)2(1,3),即解得又121,所以1,即x2y5 ,所以点C的轨迹为直线答案直线8(2015南京模拟)P是椭圆1上的任意一点,F1,F2 是它的两个焦点,O为坐标原点,则动点Q的轨迹方程是_解析由于,又22,设Q(x,y),则(,),即P点坐标为(,),又P在椭圆上,则有1上,即1.答案1二、解答题9设F(1,0),M点在x轴上,P点在y轴上,且2,当点P在y轴上运动时,求点N的轨迹方程解设M(x0,0),P(0,y0),N(x,y),(x0,y0),(1,y0),(x0,y0)(1, y

5、0)0,x0y0.由2得(xx0,y)2(x0,y0),即x0,即y24x.故所求的点N的轨迹方程是y24x.10已知两个定圆O1和O2,它们的半径分别是1和2,且O1O24,动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线解如图所示,以O1O2的中点O为原点,O1O2所在直线为x轴建立平面直角坐标系由O1O24,得O1(2,0)、O2(2,0)设动圆M的半径为r,则由动圆M与圆O1内切,有MO1r1;由动圆M与圆O2外切,有MO2r2.MO2MO13.点M的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支a,c2,b2c2a2.点M的轨迹方

6、程为1(x)能力提升题组(建议用时:25分钟)1(2015合肥模拟)动点P在直线x1上运动,O为坐标原点以OP为直角边,点O为直角顶点作等腰直角三角形OPQ,则动点Q的轨迹是_解析设Q(x,y),P(1,y0),由题意知OPOQ,且0,y0代入得x2y212,化简即y21,y1,表示两条平行直线答案两条平行直线2已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P向x轴作垂线段PP,则线段PP的中点M的轨迹是_解析圆的方程为x2y24.设P(x0,y0),M(x,y),则xx0,y,x0x,y02y.代入xy4,得x24y24,即y21.答案椭圆3(2015杭州模拟)坐标平面上有两个定点

7、A,B和动点P,如果直线PA,PB的斜率之积为定值m,则点P的轨迹可能是:椭圆;双曲线;抛物线;圆;直线试将正确的序号填在横线上:_.解析设A(a,0),B(a,0),P(x,y),则m,即y2m(x2a2)当m1时,为圆;当m0时,为双曲线;当m0且m1时为椭圆;当m0时,为直线故选.答案4. (2015扬州调研)已知点C(1,0),点A,B是O:x2y29上任意两个不同的点,且满足0,设P为弦AB的中点(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由解(1)连接CP,OP,由0,知ACBC,CPAPBPAB,由垂径定理知OP2AP2OA2,即OP2CP29,设点P(x,y),有(x2y2)(x1)2y29,化简,得x2xy24. (2)存在,根据抛物线的定义,到直线x1的距离等于到点C(1,0)的距离的点都在抛物线y22px上,其中1.p2,故抛物线方程为y24x,由方程组得x23x40,解得x11,x24,由x0,故取x1,此时y2.故满足条件的点存在,其坐标为(1,2)和(1,2).- 7 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3