1、2.4等比数列(1) 学习目标 1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系. 学习过程 一、课前准备(预习教材P48 P51,找出疑惑之处)复习1:等差数列的定义?复习2:等差数列的通项公式 ,等差数列的性质有: 二、新课导学 学习探究观察:1,2,4,8,16,1,1,20,思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q0),即
2、:= (q0)2. 等比数列的通项公式: ; ; ; 等式成立的条件 3. 等比数列中任意两项与的关系是: 典型例题例1 (1) 一个等比数列的第9项是,公比是,求它的第1项;(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项. 小结:关于等比数列的问题首先应想到它的通项公式.例2 已知数列中,lg ,试用定义证明数列是等比数列.小结:要证明一个数列是等比数列,只需证明对于任意正整数n,是一个不为0的常数就行了. 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84. 这种物质的半衰期为多长(精确到1年)?练2. 一个各项均正的等比数列,其每
3、一项都等于它后面的相邻两项之和,则公比( ). A. B. C. D. 三、总结提升 学习小结1. 等比数列定义;2. 等比数列的通项公式和任意两项与的关系. 知识拓展在等比数列中, 当,q 1时,数列是递增数列; 当,数列是递增数列; 当,时,数列是递减数列; 当,q 1时,数列是递减数列; 当时,数列是摆动数列; 当时,数列是常数列. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在为等比数列,则( ). A. 36 B. 48 C. 60 D. 722. 等比数列的首项为,末项为,公比为,这个数列的项数n( ). A. 3 B. 4 C. 5 D. 63. 已知数列a,a(1a),是等比数列,则实数a的取值范围是( ).A. a1 B. a0且a1C. a0 D. a0或a14. 设,成等比数列,公比为2,则 .5. 在等比数列中,则公比q . 课后作业 在等比数列中, ,q3,求; ,求和q; ,求; ,求.