ImageVerifierCode 换一换
格式:PPT , 页数:43 ,大小:1.38MB ,
资源ID:121498      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-121498-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年人教A版数学必修4课件:1-4-2 正弦函数、余弦函数的性质(二) .ppt)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年人教A版数学必修4课件:1-4-2 正弦函数、余弦函数的性质(二) .ppt

1、第一章 三角函数14 三角函数的图象与性质14.2 正弦函数、余弦函数的性质(二)内 容 标 准学 科 素 养1.掌握 ysin x,ycos x 的最大值与最小值,并会求简单三角函数的值域和最值2.掌握 ysin x,ycos x 的单调性,并能利用单调性比较大小3.会求函数 yAsin(x)及 yAcos(x)的单调区间.应用直观想象提升数学运算发展逻辑推理01 课前 自主预习02 课堂 合作探究03 课后 讨论探究04 课时 跟踪训练基础认识知识点一 正弦、余弦函数的定义域、值域阅读教材 P3738,思考并完成以下问题正弦函数 ysin x,余弦函数 ycos x,xR,有最值吗?值域如

2、何?(1)ysin x,x0,2图象的最高点坐标、最低点坐标是多少?提示:2,1、32,1.(2)ycos x,x0,2图象的最高点、最低点坐标是多少?提示:(0,1)、(2,1),(,1)(3)如果 sin x1,cos x1,(xR),x 的值是多少?sin x1,cos x1 呢?提示:x2k2,kZ,x2k,kZ.x322k,kZ,x2k,kZ.知识梳理 可得如下性质:由正弦、余弦曲线很容易看出正弦函数、余弦函数的定义域都是实数集 R,值域都是_对于正弦函数 ysin x,xR,有:当且仅当 x_时,取得最大值 1;当且仅当 x_时,取得最小值1.R 2k2(kZ)2k32(kZ)对于

3、余弦函数 ycos x,xR,有:当且仅当 x_时,取得最大值 1;当且仅当 x_时,取得最小值1.ysin x,xR 的值域为_ycos x,xR 的值域为_2k,kZ 2k,kZ 1,1 1,1 知识点二 正弦、余弦函数的单调性思考并完成以下问题ysin x,ycos x 都有单调变化,单调区间如何表示?(1)观察正弦函数 ysin x,x2,32 的图象,正弦函数在2,32 上函数值的变化有什么特点?推广到整个定义域呢?提示:2,2 单调递增22k,22k,kZ 单调递增,2,32 单调递减22k,322k,kZ 单调递减(2)观察余弦函数 ycos x,x,的图象余弦函数在,上函数值的

4、变化有什么特点?推广到整个定义域呢?提示:,0单调递增,2k,2k,kZ 单调递增0,单调递减2k,2k,kZ 单调递减知识梳理 正弦函数余弦函数图象单调性在_上递增,在_上递减在_上递增,在_上递减22k,22k,(kZ)22k,322k,(kZ)2k,2k,kZ2k,2k,kZ自我检测1在下列区间中,使 ysin x 为增函数的是()A0,B.2,32C.52,32D,2答案:C2函数 ysin x,x0,的值域为_答案:0,1探究一 正弦函数、余弦函数的单调性阅读教材 P3940 例 5方法步骤:(1)换元(2)代入(3)求解例 1(1)下列函数,在2,上是增函数的是()Aysin x

5、Bycos xCysin 2xDycos 2x解析 当 x2,时,2x,2,ycos 2x 为增函数答案 D(2)求函数 y1sin12x4,x4,4的单调减区间解析 y1sin12x4 sin12x4 1.由 2k212x42k2(kZ),解得 4k2x4k32(kZ)又x4,4,函数 y1sin12x4 的单调减区间为4,52,2,32,72,4.方法技巧 单调区间的求法求形如 yAsin(x)或 yAcos(x)的函数的单调区间,要先把 化为正数,(1)当 A0 时,把 x 整体放入 ysin x 或 ycos x 的单调增区间内,求得的 x的范围即函数的增区间;放入 ysin x 或

6、ycos x 的单调减区间内,可求得函数的减区间(2)当 A0,0742 110.ycos x 在0,上递减,cos2 110 cos74.即 sin 110cos74.(2)cos38 sin8,0cos38 sin38 1.ysin x 在(0,1)内递增,sincos38 sinsin38.方法技巧 比较三角函数值大小的步骤(1)异名函数化为同名函数;(2)利用诱导公式把角转化到同一单调区间上;(3)利用函数的单调性比较大小跟踪探究 比较下列各组数的大小:(1)sin376 与 sin493 ;(2)cos 8718 与 sin 499.解析:(1)sin376 sin66 sin6,s

7、in493 sin163 sin3,ysin x 在2,2 上是增函数,sin6 sin3,即 sin376 sin493.(2)cos8718 cos456 cos56,sin499 sin4139sin139 sin21718 cos1718,056 1718 cos1718,即 cos8718 sin499.探究三 正弦函数、余弦函数的最值(值域)问题阅读教材 P3839 例 3方法步骤:(1)确定自变量的取值;(2)确定角的取值范围;(3)利用范围求最值角度 1 简单的正、余弦函数的值域问题例 3 求函数 y2sin2x3,x6,6 的值域解析 6x6,32x3.02x323,0sin

8、2x3 1.00)的最大值为32,最小值为12,求函数 y4acos bx 的最值和最小正周期解析 yabcos x(b0),ymaxab32,yminab12.由ab32,ab12,解得a12,b1.y4acos bx2cos x,函数 y4acos bx 的最大值为 2,最小值为2,最小正周期为 2.方法技巧(1)求形如 yAsin(x)的函数值域问题,应先根据 x 的范围确定 x 的范围,再根据正弦函数的图象或单调性写出函数的值域;(2)求形如 yasin2xbsin xc(a0)的函数值域问题,可以通过换元转化为二次函数 g(t)at2btc在闭区间1,1上的值域问题延伸探究 3.将例

9、 3 条件改为 x6,6,求函数的最值答案:ymax2,ymin04将例 3 改为 y2cos2x3,x6,6,求值域解析:由6x6得,02x323,cos23cos2x3 cos 0,12cos2x3 2,即函数值域为1,25将例 4 改为:求函数 y2cos2x5sin x4 的值域解析:由已知得 y2(1sin2x)5sin x42sin2x5sin x2.设 sin xt,则 y2t25t22t54298,t1,1当 t1 时,ymin9;当 t1 时,ymax1.函数 y2cos2x5sin x4 的值域为9,1课后小结1求函数 yAsin(x)(A0,0)的单调区间的方法把 x 看

10、成一个整体,由 2k2x2k2(kZ)解出 x 的范围,所得区间即为增区间,由 2k2x2k32(kZ)解出 x 的范围,所得区间即为减区间若 0)在区间0,3 上单调递增,在区间3,2 上单调递减,则 的最小值为()A.32 B.23C2 D3解析 由题意,知当 x3时,函数 f(x)取得最大值,则 sin3 1,所以3 2k2(kZ),所以 6k32,kZ.又 0,所以 min32,故选 A.答案 A点评 单调区间与最值、对称轴有联系此题在 x3处取最大值,关于 x3对称(2)设函数 f(x)Asin(x)(A,是常数,A0,0)若 f(x)在区间6,2 上具有单调性,且 f2 f23 f6,则 f(x)的最小正周期为_解析 f(x)在6,2 上具有单调性,T226,T23.又23 26 T,且 f2 f23,f(x)图象的一条对称轴为 x2232712.又f2 f6,f(x)的图象与对称轴 x712相邻的一个对称中心的横坐标为2623,14T71234,T.答案 点评 此题体现了单调性、对称性、周期性;由单调性求周期的范围,由对称性求周期课时 跟踪训练

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3