1、课时跟踪检测 (五十七)分类加法计数原理与分步乘法计数原理一抓基础,多练小题做到眼疾手快1a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A20B16C10 D6解析:选B当a当组长时,则共有144(种)选法;当a不当组长时,因为a不能当副组长,则共有4312(种)选法因此共有41216种选法2一购物中心销售某种型号的智能手机,其中国产的品牌有20种,进口的品牌有10种,小明要买一部这种型号的手机,则不同的选法有()A20种 B10种C30种 D200种解析:选C分类完成此事,一类是买国产品牌,有20种选法,另一类是买进口品牌,有10种选法由分类加法
2、计数原理可知,共有201030(种)选法3某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从09这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有()A180种 B360种C720种 D960种解析:选D按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法因此车牌号码可选的所有可能情况有53444960(种)4从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是_解析:从1
3、,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法故所求奇数的个数为33218.答案:185在2016年里约奥运会百米决赛上,8名男运动员参加100米决赛其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有_种解析:分两步安排这8名运动员第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排安排方式有43224(种)第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有54321120(种)安排这8人的方式有241202 880(种)答案:2
4、 880二保高考,全练题型做到高考达标1设集合A1,0,1,集合B0,1,2,3,定义A*B(x,y)|xAB,yAB,则A*B中元素的个数是()A7 B10C25 D52解析:选B因为集合A1,0,1,集合B0,1,2,3,所以AB0,1,AB1,0,1,2,3,所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2510(个)2从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A56 B54C53 D52解析:选D在8个数中任取2个不同的数共有8756(个)对数值,但在这56个对数值中,log24log39,lo
5、g42log93,log23log49,log32log94,即满足条件的对数值共有56452(个)3从集合1,2,3,10中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A3 B4C6 D8解析:选D当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为时,等比数列可为4,6,9.同理,公比为,时,也有4个故共有8个等比数列4(2015四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A144个 B120个C96个 D72个解析:选B当万位数字为4时,个位数字从0,2中任选一个,
6、共有2A个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有CA个偶数故符合条件的偶数共有2ACA120(个)5.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A24种 B72种C84种 D120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按AB CD顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有432248(种)不同的涂法(2)A,C同色(注意:B,
7、D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有431336(种)不同的涂法故共有483684(种)不同的涂色方法故选C.6集合Na,b,c5,4,2,1,4,若关于x的不等式ax2bxc0恒有实数解,则满足条件的集合N的个数是_解析:依题意知,集合N最多有C10(个),其中对于不等式ax2bxc0,且b24ac0,因此只有当a,c同号时才有可能,共有2种情况,因此满足条件的集合N的个数是1028.答案:87在一个三位数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”,比如“102”,“546”为“驼峰数”由数字1,2,3,4可构成无重复数字的“驼
8、峰数”有_个解析:十位上的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有628(个)答案:88.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有_种解析:按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选由分步乘法计数原理,共有5433180(种)不同的涂色方法答案:1809已知ABC三边a,b,c的长都是整数,且abc,如果b25,则符合条件的三角形共有_
9、个解析:根据三边构成三角形的条件可知,c25a.第一类:当a1,b25时,c可取25,共1个值;第二类,当a2,b25时,c可取25,26,共2个值;当a25,b25时,c可取25,26,49,共25个值;所以三角形的个数为1225325.答案:32510已知集合M,若a,b,cM,则:(1)yax2bxc可以表示多少个不同的二次函数;(2)yax2bxc可以表示多少个图象开口向上的二次函数解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此yax2bxc可以表示566180(个)不同的二次函数(2)yax2bxc的图象开口向上时,a的取值有2种情况,b,c的取值均有6种
10、情况,因此yax2bxc可以表示26672(个)图象开口向上的二次函数三上台阶,自主选做志在冲刺名校1(2015湖北高考)已知集合A(x,y)|x2y21,x,yZ,B(x,y)|x|2,|y|2,x,yZ,定义集合AB(x1x2,y1y2)|(x1,y1)A,(x2,y2)B,则AB中元素的个数为()A77 B49C45 D30解析:选CA(x,y)|x2y21,x,yZ(x,y)|x1,y0;或x0,y1;或x0,y0,B(x,y)|x|2,|y|2,x,yZ(x,y)|x2,1,0,1,2;y2,1,0,1,2,AB表示点集由x11,0,1,x22,1,0,1,2,得x1x23,2,1,
11、0,1,2,3,共7种取值可能同理,由y11,0,1,y22,1,0,1,2,得y1y23,2,1,0,1,2,3,共7种取值可能当x1x23或3时,y1y2可以为2,1,0,1,2中的一个值,分别构成5个不同的点,当x1x22,1,0,1,2时,y1y2可以为3,2,1,0,1,2,3中的一个值,分别构成7个不同的点,故AB共有255745(个)元素2(2017湖南十二校联考)若m,n均为非负整数,在做mn的加法时各位均不进位(例如:1343 8023 936),则称(m,n)为“简单的”有序对,而mn称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是_解析:第1步,11
12、0,101,共2种组合方式;第2步,909,918,927,936,990,共10种组合方式;第3步,404,413,422,431,440,共5种组合方式;第4步,202,211,220,共3种组合方式根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为21053300.答案:3003.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求共有多少不同的染色方法解:可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论由题设,四棱锥S ABCD的顶点S,A,B所染的颜色互不相同,它们共有54360(种)染色方法当S,A,B染好时,不妨设其颜色分别为1,2,3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法可见,当S,A,B已染好时,C,D还有7种染法,故不同的染色方法有607420(种)