1、第七部分 静电场第一讲 基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。一、电场强度1、实验定律a、库仑定律内容;条件:点电荷,真空,点电荷静止或相对静止
2、。事实上,条件和均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k= k /r)。只有条件,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。b、电荷守恒定律c、叠加原理2、电场强度a、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。b、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。这可以从不同电场的
3、场强决定式看出点电荷:E = k结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如均匀带电环,垂直环面轴线上的某点P:E = ,其中r和R的意义见图7-1。均匀带电球壳内部:E内 = 0外部:E外 = k ,其中r指考察点到球心的距离如果球壳是有厚度的的(内径R1 、外径R2),在壳体中(R1rR2):E = ,其中为电荷体密度。这个式子的物理意义可以参照万有引力定律当中(条件部分)的“剥皮法则”理解即为图7-2中虚线以内部分的总电量。无限长均匀带电直线(电荷线密度为):E = 无限大均匀带电平面(电荷面密度为):E = 2k二、电势1、电势:把一电荷从P点移到参考点P0时电场力所做的
4、功W与该电荷电量q的比值,即U = 参考点即电势为零的点,通常取无穷远或大地为参考点。和场强一样,电势是属于场本身的物理量。W则为电荷的电势能。2、典型电场的电势a、点电荷以无穷远为参考点,U = kb、均匀带电球壳以无穷远为参考点,U外 = k ,U内 = k3、电势的叠加由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷电势的表达式和叠加原理,我们可以求出任何电场的电势分布。4、电场力对电荷做功WAB = q(UA UB)= qUAB 三、静电场中的导体静电感应静电平衡(狭义和广义)静电屏蔽1、静电平衡的特征可以总结为以下三层含义a、导体内部的合场强为零;表面的合场强不为零且
5、一般各处不等,表面的合场强方向总是垂直导体表面。b、导体是等势体,表面是等势面。c、导体内部没有净电荷;孤立导体的净电荷在表面的分布情况取决于导体表面的曲率。2、静电屏蔽导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。四、电容1、电容器孤立导体电容器一般电容器2、电容a、定义式 C = b、决定式。决定电容器电容的因素是:导体的形状和位置关系、绝缘介质的种类,所以不同电容器有不同的电容平行板电容器 C = = ,其中为绝对介电常数(真空中0 = ,其它介质中= ),r则为相对介电常数,r =
6、 。柱形电容器:C = 球形电容器:C = 3、电容器的连接a、串联 = + +b、并联 C = C1 + C2 + C3 + + Cn 4、电容器的能量用图7-3表征电容器的充电过程,“搬运”电荷做功W就是图中阴影的面积,这也就是电容器的储能E ,所以E = q0U0 = C = 电场的能量。电容器储存的能量究竟是属于电荷还是属于电场?正确答案是后者,因此,我们可以将电容器的能量用场强E表示。对平行板电容器 E总 = E2 认为电场能均匀分布在电场中,则单位体积的电场储能 w = E2 。而且,这以结论适用于非匀强电场。五、电介质的极化1、电介质的极化a、电介质分为两类:无极分子和有极分子,
7、前者是指在没有外电场时每个分子的正、负电荷“重心”彼此重合(如气态的H2 、O2 、N2和CO2),后者则反之(如气态的H2O 、SO2和液态的水硝基笨)b、电介质的极化:当介质中存在外电场时,无极分子会变为有极分子,有极分子会由原来的杂乱排列变成规则排列,如图7-4所示。2、束缚电荷、自由电荷、极化电荷与宏观过剩电荷a、束缚电荷与自由电荷:在图7-4中,电介质左右两端分别显现负电和正电,但这些电荷并不能自由移动,因此称为束缚电荷,除了电介质,导体中的原子核和内层电子也是束缚电荷;反之,能够自由移动的电荷称为自由电荷。事实上,导体中存在束缚电荷与自由电荷,绝缘体中也存在束缚电荷和自由电荷,只是
8、它们的比例差异较大而已。b、极化电荷是更严格意义上的束缚电荷,就是指图7-4中电介质两端显现的电荷。而宏观过剩电荷是相对极化电荷来说的,它是指可以自由移动的净电荷。宏观过剩电荷与极化电荷的重要区别是:前者能够用来冲放电,也能用仪表测量,但后者却不能。第二讲 重要模型与专题一、场强和电场力【物理情形1】试证明:均匀带电球壳内部任意一点的场强均为零。【模型分析】这是一个叠加原理应用的基本事例。如图7-5所示,在球壳内取一点P ,以P为顶点做两个对顶的、顶角很小的锥体,锥体与球面相交得到球面上的两个面元S1和S2 ,设球面的电荷面密度为,则这两个面元在P点激发的场强分别为E1 = kE2 = k为了
9、弄清E1和E2的大小关系,引进锥体顶部的立体角 ,显然 = = 所以 E1 = k ,E2 = k ,即:E1 = E2 ,而它们的方向是相反的,故在P点激发的合场强为零。同理,其它各个相对的面元S3和S4 、S5和S6 激发的合场强均为零。原命题得证。【模型变换】半径为R的均匀带电球面,电荷的面密度为,试求球心处的电场强度。【解析】如图7-6所示,在球面上的P处取一极小的面元S ,它在球心O点激发的场强大小为E = k ,方向由P指向O点。无穷多个这样的面元激发的场强大小和S激发的完全相同,但方向各不相同,它们矢量合成的效果怎样呢?这里我们要大胆地预见由于由于在x方向、y方向上的对称性, =
10、 = 0 ,最后的E = Ez ,所以先求Ez = Ecos= k ,而且Scos为面元在xoy平面的投影,设为S所以 Ez = S而 S= R2 【答案】E = k ,方向垂直边界线所在的平面。学员思考如果这个半球面在yoz平面的两边均匀带有异种电荷,面密度仍为,那么,球心处的场强又是多少?推荐解法将半球面看成4个球面,每个球面在x、y、z三个方向上分量均为 k,能够对称抵消的将是y、z两个方向上的分量,因此E = Ex 答案大小为k,方向沿x轴方向(由带正电的一方指向带负电的一方)。【物理情形2】有一个均匀的带电球体,球心在O点,半径为R ,电荷体密度为 ,球体内有一个球形空腔,空腔球心在
11、O点,半径为R,= a ,如图7-7所示,试求空腔中各点的场强。【模型分析】这里涉及两个知识的应用:一是均匀带电球体的场强定式(它也是来自叠加原理,这里具体用到的是球体内部的结论,即“剥皮法则”),二是填补法。将球体和空腔看成完整的带正电的大球和带负电(电荷体密度相等)的小球的集合,对于空腔中任意一点P ,设 = r1 , = r2 ,则大球激发的场强为E1 = k = kr1 ,方向由O指向P“小球”激发的场强为E2 = k = kr2 ,方向由P指向OE1和E2的矢量合成遵从平行四边形法则,E的方向如图。又由于矢量三角形PE1E和空间位置三角形OP O是相似的,E的大小和方向就不难确定了。
12、【答案】恒为ka ,方向均沿O O,空腔里的电场是匀强电场。学员思考如果在模型2中的OO连线上O一侧距离O为b(bR)的地方放一个电量为q的点电荷,它受到的电场力将为多大?解说上面解法的按部就班应用答kq。二、电势、电量与电场力的功【物理情形1】如图7-8所示,半径为R的圆环均匀带电,电荷线密度为,圆心在O点,过圆心跟环面垂直的轴线上有P点, = r ,以无穷远为参考点,试求P点的电势UP 。【模型分析】这是一个电势标量叠加的简单模型。先在圆环上取一个元段L ,它在P点形成的电势U = k环共有段,各段在P点形成的电势相同,而且它们是标量叠加。【答案】UP = 思考如果上题中知道的是环的总电量
13、Q ,则UP的结论为多少?如果这个总电量的分布不是均匀的,结论会改变吗?答UP = ;结论不会改变。再思考将环换成半径为R的薄球壳,总电量仍为Q ,试问:(1)当电量均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?(2)当电量不均匀分布时,球心电势为多少?球内(包括表面)各点电势为多少?解说(1)球心电势的求解从略;球内任一点的求解参看图7-5U1 = k= k= kU2 = k它们代数叠加成 U = U1 + U2 = k而 r1 + r2 = 2Rcos所以 U = 2Rk所有面元形成电势的叠加 U = 2Rk注意:一个完整球面的 = 4(单位:球面度sr),但作为对顶的锥角,
14、只能是2 ,所以U = 4Rk= k(2)球心电势的求解和思考相同;球内任一点的电势求解可以从(1)问的求解过程得到结论的反证。答(1)球心、球内任一点的电势均为k ;(2)球心电势仍为k ,但其它各点的电势将随电量的分布情况的不同而不同(内部不再是等势体,球面不再是等势面)。【相关应用】如图7-9所示,球形导体空腔内、外壁的半径分别为R1和R2 ,带有净电量+q ,现在其内部距球心为r的地方放一个电量为+Q的点电荷,试求球心处的电势。【解析】由于静电感应,球壳的内、外壁形成两个带电球壳。球心电势是两个球壳形成电势、点电荷形成电势的合效果。根据静电感应的尝试,内壁的电荷量为Q ,外壁的电荷量为
15、+Q+q ,虽然内壁的带电是不均匀的,根据上面的结论,其在球心形成的电势仍可以应用定式,所以【答案】Uo = k k + k 。反馈练习如图7-10所示,两个极薄的同心导体球壳A和B,半径分别为RA和RB ,现让A壳接地,而在B壳的外部距球心d的地方放一个电量为+q的点电荷。试求:(1)A球壳的感应电荷量;(2)外球壳的电势。解说这是一个更为复杂的静电感应情形,B壳将形成图示的感应电荷分布(但没有净电量),A壳的情形未画出(有净电量),它们的感应电荷分布都是不均匀的。此外,我们还要用到一个重要的常识:接地导体(A壳)的电势为零。但值得注意的是,这里的“为零”是一个合效果,它是点电荷q 、A壳、
16、B壳(带同样电荷时)单独存在时在A中形成的的电势的代数和,所以,当我们以球心O点为对象,有UO = k + k + k = 0QB应指B球壳上的净电荷量,故 QB = 0所以 QA = q学员讨论:A壳的各处电势均为零,我们的方程能不能针对A壳表面上的某点去列?(答:不能,非均匀带电球壳的球心以外的点不能应用定式!)基于刚才的讨论,求B的电势时也只能求B的球心的电势(独立的B壳是等势体,球心电势即为所求)UB = k + k答(1)QA = q ;(2)UB = k(1) 。【物理情形2】图7-11中,三根实线表示三根首尾相连的等长绝缘细棒,每根棒上的电荷分布情况与绝缘棒都换成导体棒时完全相同
17、。点A是abc的中心,点B则与A相对bc棒对称,且已测得它们的电势分别为UA和UB 。试问:若将ab棒取走,A、B两点的电势将变为多少?【模型分析】由于细棒上的电荷分布既不均匀、三根细棒也没有构成环形,故前面的定式不能直接应用。若用元段分割叠加,也具有相当的困难。所以这里介绍另一种求电势的方法。每根细棒的电荷分布虽然复杂,但相对各自的中点必然是对称的,而且三根棒的总电量、分布情况彼此必然相同。这就意味着:三棒对A点的电势贡献都相同(可设为U1);ab棒、ac棒对B点的电势贡献相同(可设为U2);bc棒对A、B两点的贡献相同(为U1)。所以,取走ab前 3U1 = UA 2U2 + U1 = U
18、B取走ab后,因三棒是绝缘体,电荷分布不变,故电势贡献不变,所以 UA= 2U1 UB= U1 + U2【答案】UA= UA ;UB= UA + UB 。模型变换正四面体盒子由彼此绝缘的四块导体板构成,各导体板带电且电势分别为U1 、U2 、U3和U4 ,则盒子中心点O的电势U等于多少?解说此处的四块板子虽然位置相对O点具有对称性,但电量各不相同,因此对O点的电势贡献也不相同,所以应该想一点办法我们用“填补法”将电量不对称的情形加以改观:先将每一块导体板复制三块,作成一个正四面体盒子,然后将这四个盒子位置重合地放置构成一个有四层壁的新盒子。在这个新盒子中,每个壁的电量将是完全相同的(为原来四块
19、板的电量之和)、电势也完全相同(为U1 + U2 + U3 + U4),新盒子表面就构成了一个等势面、整个盒子也是一个等势体,故新盒子的中心电势为U= U1 + U2 + U3 + U4 最后回到原来的单层盒子,中心电势必为 U = U答U = (U1 + U2 + U3 + U4)。学员讨论:刚才的这种解题思想是否适用于“物理情形2”?(答:不行,因为三角形各边上电势虽然相等,但中点的电势和边上的并不相等。)反馈练习电荷q均匀分布在半球面ACB上,球面半径为R ,CD为通过半球顶点C和球心O的轴线,如图7-12所示。P、Q为CD轴线上相对O点对称的两点,已知P点的电势为UP ,试求Q点的电势
20、UQ 。解说这又是一个填补法的应用。将半球面补成完整球面,并令右边内、外层均匀地带上电量为q的电荷,如图7-12所示。从电量的角度看,右半球面可以看作不存在,故这时P、Q的电势不会有任何改变。而换一个角度看,P、Q的电势可以看成是两者的叠加:带电量为2q的完整球面;带电量为q的半球面。考查P点,UP = k + U半球面其中 U半球面显然和为填补时Q点的电势大小相等、符号相反,即 U半球面= UQ 以上的两个关系已经足以解题了。答UQ = k UP 。【物理情形3】如图7-13所示,A、B两点相距2L ,圆弧是以B为圆心、L为半径的半圆。A处放有电量为q的电荷,B处放有电量为q的点电荷。试问:
21、(1)将单位正电荷从O点沿移到D点,电场力对它做了多少功?( 2)将单位负电荷从D点沿AB的延长线移到无穷远处去,电场力对它做多少功?【模型分析】电势叠加和关系WAB = q(UA UB)= qUAB的基本应用。UO = k + k = 0UD = k + k = U = 0再用功与电势的关系即可。【答案】(1);(2)。 【相关应用】在不计重力空间,有A、B两个带电小球,电量分别为q1和q2 ,质量分别为m1和m2 ,被固定在相距L的两点。试问:(1)若解除A球的固定,它能获得的最大动能是多少?(2)若同时解除两球的固定,它们各自的获得的最大动能是多少?(3)未解除固定时,这个系统的静电势能
22、是多少?【解说】第(1)问甚间;第(2)问在能量方面类比反冲装置的能量计算,另启用动量守恒关系;第(3)问是在前两问基础上得出的必然结论(这里就回到了一个基本的观念斧正:势能是属于场和场中物体的系统,而非单纯属于场中物体这在过去一直是被忽视的。在两个点电荷的环境中,我们通常说“两个点电荷的势能”是多少。)【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。思考设三个点电荷的电量分别为q1 、q2和q3 ,两两相距为r12 、r23和r31 ,则这个点电荷系统的静电势能是多少?解略。答k(+)。反馈应用如图7-14所示,三个带同种电荷的相同金属小球,每个球的质量均为m 、电量均为
23、q ,用长度为L的三根绝缘轻绳连接着,系统放在光滑、绝缘的水平面上。现将其中的一根绳子剪断,三个球将开始运动起来,试求中间这个小球的最大速度。解设剪断的是1、3之间的绳子,动力学分析易知,2球获得最大动能时,1、2之间的绳子与2、3之间的绳子刚好应该在一条直线上。而且由动量守恒知,三球不可能有沿绳子方向的速度。设2球的速度为v ,1球和3球的速度为v,则动量关系 mv + 2m v= 0能量关系 3k = 2 k + k + mv2 + 2m解以上两式即可的v值。答v = q 。三、电场中的导体和电介质【物理情形】两块平行放置的很大的金属薄板A和B,面积都是S ,间距为d(d远小于金属板的线度
24、),已知A板带净电量+Q1 ,B板带尽电量+Q2 ,且Q2Q1 ,试求:(1)两板内外表面的电量分别是多少;(2)空间各处的场强;(3)两板间的电势差。【模型分析】由于静电感应,A、B两板的四个平面的电量将呈现一定规律的分布(金属板虽然很薄,但内部合场强为零的结论还是存在的);这里应注意金属板“很大”的前提条件,它事实上是指物理无穷大,因此,可以应用无限大平板的场强定式。为方便解题,做图7-15,忽略边缘效应,四个面的电荷分布应是均匀的,设四个面的电荷面密度分别为1 、2 、3和4 ,显然(1 + 2)S = Q1(3 + 4)S = Q2 A板内部空间场强为零,有 2k(1 2 3 4)=
25、0A板内部空间场强为零,有 2k(1 + 2 + 3 4)= 0解以上四式易得 1 = 4 = 2 = 3 = 有了四个面的电荷密度,、空间的场强就好求了如E =2k(1 + 2 3 4)= 2k。最后,UAB = Ed【答案】(1)A板外侧电量、A板内侧电量,B板内侧电量、B板外侧电量;(2)A板外侧空间场强2k,方向垂直A板向外,A、B板之间空间场强2k,方向由A垂直指向B,B板外侧空间场强2k,方向垂直B板向外;(3)A、B两板的电势差为2kd,A板电势高。学员思考如果两板带等量异号的净电荷,两板的外侧空间场强等于多少?(答:为零。)学员讨论(原模型中)作为一个电容器,它的“电量”是多少
26、(答:)?如果在板间充满相对介电常数为r的电介质,是否会影响四个面的电荷分布(答:不会)?是否会影响三个空间的场强(答:只会影响空间的场强)?学员讨论(原模型中)我们是否可以求出A、B两板之间的静电力?答:可以;以A为对象,外侧受力(方向相左),内侧受力(方向向右),它们合成即可,结论为F = Q1Q2 ,排斥力。【模型变换】如图7-16所示,一平行板电容器,极板面积为S ,其上半部为真空,而下半部充满相对介电常数为r的均匀电介质,当两极板分别带上+Q和Q的电量后,试求:(1)板上自由电荷的分布;(2)两板之间的场强;(3)介质表面的极化电荷。【解说】电介质的充入虽然不能改变内表面的电量总数,
27、但由于改变了场强,故对电荷的分布情况肯定有影响。设真空部分电量为Q1 ,介质部分电量为Q2 ,显然有Q1 + Q2 = Q两板分别为等势体,将电容器看成上下两个电容器的并联,必有U1 = U2 即 = ,即 = 解以上两式即可得Q1和Q2 。场强可以根据E = 关系求解,比较常规(上下部分的场强相等)。上下部分的电量是不等的,但场强居然相等,这怎么解释?从公式的角度看,E = 2k(单面平板),当k 、同时改变,可以保持E不变,但这是一种结论所展示的表象。从内在的角度看,k的改变正是由于极化电荷的出现所致,也就是说,极化电荷的存在相当于在真空中形成了一个新的电场,正是这个电场与自由电荷(在真空
28、中)形成的电场叠加成为E2 ,所以E2 = 4k( )= 4k( )请注意:这里的和Q是指极化电荷的面密度和总量; E = 4k的关系是由两个带电面叠加的合效果。【答案】(1)真空部分的电量为Q ,介质部分的电量为Q ;(2)整个空间的场强均为 ;(3)Q 。思考应用一个带电量为Q的金属小球,周围充满相对介电常数为r的均匀电介质,试求与与导体表面接触的介质表面的极化电荷量。解略。答Q= Q 。四、电容器的相关计算【物理情形1】由许多个电容为C的电容器组成一个如图7-17所示的多级网络,试问:(1)在最后一级的右边并联一个多大电容C,可使整个网络的A、B两端电容也为C?(2)不接C,但无限地增加
29、网络的级数,整个网络A、B两端的总电容是多少?【模型分析】这是一个练习电容电路简化基本事例。第(1)问中,未给出具体级数,一般结论应适用特殊情形:令级数为1 ,于是 + = 解C即可。第(2)问中,因为“无限”,所以“无限加一级后仍为无限”,不难得出方程 + = 【答案】(1)C ;(2)C 。【相关模型】在图7-18所示的电路中,已知C1 = C2 = C3 = C9 = 1F ,C4 = C5 = C6 = C7 = 2F ,C8 = C10 = 3F ,试求A、B之间的等效电容。【解说】对于既非串联也非并联的电路,需要用到一种“Y型变换”,参见图7-19,根据三个端点之间的电容等效,容易
30、得出定式Y型: Ca = Cb = Cc = Y型:C1 = C2 = C3 = 有了这样的定式后,我们便可以进行如图7-20所示的四步电路简化(为了方便,电容不宜引进新的符号表达,而是直接将变换后的量值标示在图中)【答】约2.23F 。【物理情形2】如图7-21所示的电路中,三个电容器完全相同,电源电动势1 = 3.0V ,2 = 4.5V,开关K1和K2接通前电容器均未带电,试求K1和K2接通后三个电容器的电压Uao 、Ubo和Uco各为多少。【解说】这是一个考查电容器电路的基本习题,解题的关键是要抓与o相连的三块极板(俗称“孤岛”)的总电量为零。电量关系:+= 0电势关系:1 = Uao
31、 + Uob = Uao Ubo 2 = Ubo + Uoc = Ubo Uco 解以上三式即可。【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = 4.0V 。【伸展应用】如图7-22所示,由n个单元组成的电容器网络,每一个单元由三个电容器连接而成,其中有两个的电容为3C ,另一个的电容为3C 。以a、b为网络的输入端,a、b为输出端,今在a、b间加一个恒定电压U ,而在ab间接一个电容为C的电容器,试求:(1)从第k单元输入端算起,后面所有电容器储存的总电能;(2)若把第一单元输出端与后面断开,再除去电源,并把它的输入端短路,则这个单元的三个电容器储存的总电能是多少?【解说】
32、这是一个结合网络计算和“孤岛现象”的典型事例。(1)类似“物理情形1”的计算,可得 C总 = Ck = C所以,从输入端算起,第k单元后的电压的经验公式为 Uk = 再算能量储存就不难了。(2)断开前,可以算出第一单元的三个电容器、以及后面“系统”的电量分配如图7-23中的左图所示。这时,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤岛”。此后,电容器的相互充电过程(C3类比为“电源”)满足电量关系:Q1= Q3 Q2+ Q3= 电势关系:+ = 从以上三式解得 Q1= Q3= ,Q2= ,这样系统的储能就可以用得出了。【答】(1)Ek = ;(2) 。学员思考图7-23展示的过程中,始末状态的电容器储能是否一样?(答:不一样;在相互充电的过程中,导线消耗的焦耳热已不可忽略。)w.w.w.k.s.5.u.c.o.m