1、专题突破练(八)磁场(限时:40分钟)对点强化1磁场中的几何知识1(多选)如图1所示,MN是磁感应强度为B的匀强磁场的边界一质量为m、电荷量为q的粒子在纸面内从O点射入磁场若粒子速度为v0,最远能落在边界上的A点下列说法正确的有()图1A若粒子落在A点的左侧,其速度一定小于v0B若粒子落在A点的右侧,其速度一定大于v0C若粒子落在A点左右两侧d的范围内,其速度不可能小于v0D若粒子落在A点左右两侧d的范围内,其速度不可能大于v0BC带电粒子在磁场中做匀速圆周运动,qv0B,所以r,当带电粒子从不同方向由O点以速度v0进入匀强磁场时,其轨迹是半径为r的圆,轨迹与边界的交点位置最远是离O点2r的距
2、离,即OA2r,落在A点的粒子从O点垂直入射,其他粒子则均落在A点左侧,若落在A点右侧则必须有更大的速度,选项B正确;若粒子速度虽然比v0大,但进入磁场时与磁场边界夹角过大或过小,粒子仍有可能落在A点左侧,选项A、D错误;若粒子落在A点左右两侧d的范围内,设其半径为r,则r,代入r,r,解得vv0,选项C正确2如图2所示,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B0.60 T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab板l16 cm处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是v3.0106 m/s,已知粒子的比荷5.0107 C/kg,现只
3、考虑在图纸平面中运动的粒子,求ab上被粒子打中的区域的长度【导学号:96622415】图2【解析】粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R表示轨道半径,有qvBm由此得R代入数值得R10 cm可见Rl2R因朝不同方向发射的粒子的圆轨迹都过S,由此可知,某一圆轨迹在图中N左侧与ab相切,则此切点P1就是粒子能打中的左侧最远点NP18 cm再考虑N的右侧,任何粒子在运动中离S的距离不可能超过2R,以2R为半径、S为圆心作圆,交ab于N右侧的P2点,此即右侧能打到的最远点由图中几何关系得NP212 cm所求长度为P1P2NP1NP2代入数值得P1P220 cm.【答案】20 cm对点强
4、化2带电粒子在交变电、磁场中的运动3如图3甲所示,两平行金属板正对放置,长度l10 cm,间距d5 cm,在两板间的中线OO的O处有一个粒子源,沿OO方向连续不断地放出速度v01.0105 m/s的质子两平行金属板间的电压随时间变化的ut图线如图乙所示,电场只分布在两板之间靠近金属板边缘的右侧分布有范围足够大的匀强磁场,磁感应强度B103 T,方向垂直于纸面向里,磁场边缘MN与中线OO垂直质子的比荷1.0108 C/kg,质子之间的作用力忽略不计,下列说法正确的是()甲乙图3A有质子进入磁场区域的时间是0.15 sB质子在电场中运动的最长时间是0.10 sC质子在磁场中做圆周运动的最大半径是0
5、.5 mD质子在磁场中运动的最大速度是v0的倍C质子在板间做类平抛运动,恰好从下板右边缘飞出时,在沿电场方向上t2,解得U025 V,即板间电压U25 V时,质子才能离开电场,即在00.025 s和0.1750.200 s内才有质子进入磁场,选项A错误;当U25 V时,质子离开电场时的偏转角最大,沿电场方向vyt0.5105 m/s,在电场中的最大偏转角tan ,只要质子能离开电场,所运动时间最长,均为t1106 s,选项B错误;质子离开电场时的最大速度v105 m/sv0,质子在磁场中的最大半径r0.5 m,选项C正确,选项D错误4如图4甲所示,水平轨道光滑,小球质量为m,带电荷量为q,可看
6、作质点,空间存在不断变化的电场和磁场,磁感应强度随时间的变化规律如图乙所示,磁感应强度的大小B,方向垂直纸面向里电场强度在第1 s,3 s,5 s,时间内方向水平向右,大小为E,在第2 s,4 s,6 s,时间内方向竖直向上,大小也为E.小球从零时刻开始在A点由静止释放,求:(1)t1.5 s时,小球与A点的直线距离大小;(2)在A点前方轨道正上方高度为h位置有圆环水平放置,若带电小球恰好可以从圆环中心竖直穿过,求圆环中心与A点的水平距离大小【导学号:96622416】图4【解析】(1)小球在第1 s内,竖直方向受力平衡,水平方向只受向右的电场力作用,做匀加速直线运动设其加速度大小为a,则qE
7、ma可得ag运动轨迹如图所示,1 s时小球到达1位置的速度为v1atg(m/s),位移x1(m)第2 s内磁场向里,电场向上,且有qEmg,故小球做匀速圆周运动由qvB得r1(m)周期T1 st1.5 s时,小球在圆轨迹的最高点,高度为2r1,则小球与A点的直线距离s(m)(2)第3 s内电场水平向右,没有磁场,小球以初速度v1、加速度ag做匀加速直线运动,第3 s末到达2位置,速度为v2,则v2v1at2g(m/s),位移大小x2v1t(m)小球在第4 s内电场力与重力平衡,在洛伦兹力作用下做匀速圆周运动,周期T1 s半径r22(m)因此小球在奇数秒内做匀加速运动,在偶数秒内做匀速圆周运动,
8、在圆轨迹的最低点速度为v1g(m/s),v22g(m/s),v33g(m/s)圆轨迹的半径分别为r1(m),r22(m),r33(m)在奇数秒内位移分别为x1(m),x2(m),x3(m)小球恰好从圆环中竖直穿过,则圆轨迹半径恰好等于h,有h4r4因此圆环在小球运动的第四个圆轨迹与圆心等高处若小球向上竖直穿过圆环,则圆环与A点的水平距离为xx1x2x3x4r4(m)若小球竖直向下穿过圆环,则圆环与A点的水平距离为xx1x2x3x4r4(m)【答案】(1)(m)(2)(m)对点强化3带电粒子在磁场中的运动5(多选)如图5所示,在xOy平面内,有垂直于xOy平面向里的匀强磁场,有一带电粒子从坐标原
9、点O处以速度v0与y轴正方向夹角为30进入磁场,粒子经过y轴正半轴在离开磁场前粒子距x轴的最大距离是l,若磁感应强度是B,粒子的质量是m,电荷量是q,则下列说法正确的是()图5A粒子带正电B粒子在第象限和第象限的运动时间之比是31C粒子的速度是D粒子与x轴正半轴的交点距出发点O的距离是BD粒子向右偏转,由左手定则知,粒子带负电,选项A错误;由几何知识得粒子在第象限和第象限运动对应的圆心角分别是60和180,故粒子在第象限和第象限的运动时间之比是31,选项B正确;当粒子速度方向与x轴平行时距x轴最远,由几何知识得:rrsin 30l,即r,由r得v0,选项C错误;由几何知识得粒子与x轴正半轴的交
10、点距出发点O的距离xr,选项D正确6如图6所示,有一轴线水平且垂直纸面的固定绝缘弹性圆筒,圆筒壁光滑,筒内有沿轴线向里的匀强磁场,O是筒的圆心,圆筒的半径r0.40 m在圆筒底部有一小孔a(只能容一个粒子通过)圆筒下方一个带正电的粒子经电场加速后(加速电场未画出),以v2104 m/s的速度从a孔垂直磁场并正对着圆心O进入筒中,该带电粒子与圆筒壁碰撞4次后恰好又从小孔a射出圆筒已知该带电粒子每次与筒壁发生碰撞时电荷量和能量都不损失,不计粒子的重力和空气阻力,粒子的比荷5107 C/kg,求磁感应强度B的大小(结果允许含有三角函数式)【导学号:96622417】图6【解析】带电粒子在磁场中做匀速
11、圆周运动,洛伦兹力提供向心力,即qvB解得B由于带电粒子与圆筒碰撞时无电荷量和能量损失,那么每次碰撞前后粒子速度大小不变、速度方向总是沿着圆筒半径方向,4个碰撞点与小孔a恰好将圆筒壁五等分,粒子在圆筒内的轨迹具有对称性、由5段相同的圆弧组成,设每段轨迹圆弧对应圆心角为,则由几何关系可得tan 有两种情形符合题意甲乙情形1:如图甲所示,每段轨迹圆弧对应的圆心角为解得Btan 将数据代入得Btan 103 T情形2:如图乙所示,每段轨迹圆弧对应的圆心角为解得Btan 将数据代入得Btan 103 T.【答案】tan 103 T或tan 103 T对点强化4带电粒子在复合场中的运动7如图7所示,在一
12、宽度D16 cm的区域内,同时存在相互垂直的匀强磁场B和匀强电场E,电场的方向竖直向上,磁场的方向垂直纸面向外一束带电粒子以速度v0同时从垂直电场和磁场的方向射入时,恰不改变运动方向若粒子束射入时只有电场,可测得粒子穿过电场时沿竖直方向向上偏移6.4 cm;若粒子束射入时只有磁场,则粒子离开磁场时偏离原方向的距离是多少?不计粒子的重力图7【解析】当带电粒子束沿直线运动时,粒子受到的电场力和洛伦兹力平衡,有qEqv0B只有电场时,根据牛顿第二定律有Eqma设粒子在电场中运动的时间为t,则Dv0t偏转的距离为y1at26.4 cm只有磁场时,粒子做匀速圆周运动根据牛顿第二定律有qv0Bm综上可得R
13、20 cm由图中几何关系可得y2R8 cm.【答案】8 cm8.(2017扬州模拟)如图8所示,位于竖直平面内的直角坐标系中,第一象限内存在沿y轴负方向、电场强度大小E2 V/m的匀强电场,第三象限内存在沿x轴负方向、大小也为E2 V/m的匀强电场;其中第一象限内有一平行于x轴的虚线,虚线与x轴之间的距离为h0.4 m,在虚线上方存在垂直xOy平面向里、磁感应强度大小为B0.5 T的匀强磁场,在第三象限存在垂直xOy平面向外的、磁感应强度大小也为B0.5 T的匀强磁场在第三象限有一点P,且O、P的连线与x轴负半轴的夹角45.现有一带电荷量为q的小球在P点处获得一沿PO方向的速度,刚好沿PO做匀
14、速直线运动,经过原点后进入第一象限,重力加速度g取10 m/s2.求:【导学号:96622418】图8(1)小球做匀速直线运动时的受力情况以及所受力的比例关系;(2)小球做匀速直线运动时的速度大小;(3)小球从O点进入第一象限开始经过多长时间离开x轴?【解析】(1)由题意可知,小球在第三象限沿PO做匀速直线运动时,受竖直向下的重力、水平方向的电场力、与PO方向垂直的洛伦兹力,则由力的平衡条件可知,小球的洛伦兹力方向一定与PO垂直且斜向左上方,因此小球带负电荷,电场力一定水平向右设小球质量为m,所受洛伦兹力大小为f,由平衡条件得小球所受力的比例关系为mg(qE)f11.(2)由第(1)问得qvBqE解得v4 m/s.(3)小球刚进入第一象限时,电场力和重力平衡,可知小球先做匀速直线运动,进入y0.4 m的区域后做匀速圆周运动,轨迹如图所示,最后从N点离开x轴,小球由OA匀速运动的位移为s1h运动时间t10.1 s由几何关系和圆周运动的周期关系式T,小球在y0.4 m区域内偏转了90则由AC小球做圆周运动的时间为t2T s由对称性知从CN的时间t3t1故小球在第一象限运动的总时间tt1t2t320.1 s s0.828 s.【答案】(1)见解析(2)4 m/s(3)0.828 s