1、高考大题专项练六高考中的概率、统计与统计案例1.(2017陕西渭南二模,文18)我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(单位:吨),用水量不超过x的部分按平价收费,超过x的部分按议价收费,为了了解全市市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市
2、政府希望使85%的居民每月的用水量不超过标准x(单位:吨),估计x的值,并说明理由.2.为迎接即将举行的集体跳绳比赛,高一年级对甲、乙两个代表队各进行了6轮测试,测试成绩(单位:次/分钟)如下表:轮次一二三四五六甲736682726376乙837562697568(1)补全茎叶图,并指出乙队测试成绩的中位数和众数;(2)试用统计学中的平均数、方差知识对甲、乙两个代表队的测试成绩进行分析.3.(2017河南洛阳一模,文18)某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东、西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示,其中一个数字被污损.(1)求东部各城市观看该节目
3、观众平均人数超过西部各城市观看该节目观众平均人数的概率;(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅,现从观看节目的观众中随机统计了4位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示);年龄x(岁)20304050周均学习成语知识时间y(小时)2.5344.5由表中数据,试求线性回归方程x+,并预测年龄为50岁观众周均学习成语知识时间.参考公式:.4.(2017安徽安庆二模,文19)为响应阳光体育运动的号召,某县中学生足球活动正如火如荼地开展,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24 00
4、0名中学生(其中男生14 000人,女生10 000人)中抽取120名,统计他们平均每天足球运动的时间,如下表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是0,3)男生平均每天足球运动的时间分布情况:平均每天足球运动的时间0,0.5)0.5,1)1,1.5)1.5,2)2,2.5)2.5,3人数23282210x女生平均每天足球运动的时间分布情况:平均每天足球运动的时间0,0.5)0.5,1)1,1.5)1.5,2)2,2.5)2.5,3人数51218103y(1)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);(2)若称平均每天足球运动的时间不
5、少于2小时的学生为“足球健将”.低于2小时的学生为“非足球健将”.请根据上述表格中的统计数据填写下面22列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?足球健将非足球健将总计男生女生总计若在足球活动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.参考公式:K2=,其中n=a+b+c+d.P(K2k0)0.500.400.250.150.100.050.0250.010k00.4550.7081.3232.0722.7063.8415.0246.635导学号241909695.某公司为确定下一年度投入某种产品的宣传费,需了解年
6、宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售量yi(i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(xi-)2(wi-)2(xi-)(yi-)(wi-) (yi-)46.65636.8289.81.61 469108.8表中wi=wi.(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列
7、问题:当年宣传费x=49时,年销售量及年利润的预报值是多少?当年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归直线v=+u的斜率和截距的最小二乘估计分别为.6.(2017福建福州一模,文19)在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以最佳的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如下表:运动员比赛场次总分1234567891011A322242621B1351104428C986111228D784431835E3125827542F4116936847G10121281210
8、771H12126127121273(1)根据表中的比赛数据,比较A与B的成绩及稳定情况;(2)从前7场平均分低于6.5的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;(3)请依据前7场比赛的数据,预测冠亚军选手,并说明理由.导学号241909707.(2017辽宁抚顺一模,文18)某学校为了了解本校高一学生每周课外阅读时间(单位:小时)的情况,按10%的比例对该校高一600名学生进行抽样统计,将样本数据分为5组:第一组0,2),第二组2,4),第三组4,6),第四组6,8),第五组8,10,并将所得数据绘制成如图所示的频率分布直方图:(1)求图中的x的值
9、;(2)估计该校高一学生每周课外阅读的平均时间;(3)为了进一步提高本校高一学生对课外阅读的兴趣,学校准备选拔2名学生参加全市阅读知识竞赛,现决定先在第三组、第四组、第五组中用分层抽样的方法,共随机抽取6名学生,再从这6名学生中随机抽取2名学生代表学校参加全市竞赛,在此条件下,求第三组中恰有一名学生被抽取的概率.8.(2017安徽淮南一模,文18)为了弘扬民族文化,某校举行了“我爱国学,传诵经典”考试,并从中随机抽取了100名考生的成绩(得分均为整数,满分100分)进行统计制表,其中成绩不低于80分的考生被评为优秀生,请根据频率分布表中所提供的数据,用频率估计概率,回答下列问题.分组频数频率5
10、0,60)50.0560,70)a0.2070,80)35b80,90)250.2590,100150.15合计1001.00(1)求a,b的值及随机抽取一考生恰为优秀生的概率;(2)按频率分布表中的成绩分组,采用分层抽样抽取20人参加学校的“我爱国学”宣传活动,求其中优秀生的人数;(3)在第(2)问抽取的优秀生中指派2名学生担任负责人,求至少一人的成绩在90,100的概率.9.(2017山东潍坊二模,文16)市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:月收入(单位:百元)10,20)20,30)30,
11、40)40,50)50,60)60,70频数5203031104赞成人数214243073(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的类人群在该项措施的态度上有何不同;(2)现从上班中月收入在10,20)和60,70的市民中各随机抽取一个进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率.导学号24190971高考大题专项练六高考中的概率、统计与统计案例1.解 (1)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)0.5=1,解得a=0.30.(2)由频率分布直方图可知,100位居民每人月用水
12、量不低于3吨的频率为(0.12+0.08+0.04)0.5=0.12,由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为800 0000.12=96 000.(3)前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)0.5=0.880.85,而前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)0.5=0.730.85,2.5x83+83+87+90+a+99,则a2.706,能有90%的把握认为是否为“足球健将”与性别有关;记不足半小时的两人为a,b,足球运动时间在0.5,1)内的3人为1,2,3,则总的基本事件有10个,取
13、2名代表都是足球运动时间不足半小时的是ab,故概率为.5.解 (1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.由于=68,=563-686.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68.(3)由(2)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.60.2-49=66.32.根据(2)的结果知,年利润z的预报值=0.2(100.6+68)-x=-x+13.6+20.12.所以当=6.8,即x=46.24时,取
14、得最大值.故年宣传费为46.24千元时,年利润的预报值最大.6.解 (1)由表格中的数据,我们可以分别求出运动员A和B前7场比赛积分的平均数和方差,作为度量两运动员比赛的成绩及稳定性的依据.运动员A的平均分21=3,方差(3-3)2+(2-3)2+(2-3)2+(2-3)2+(2-3)2+(4-3)2+(6-3)2=2;运动员B的平均分28=4,方差(1-4)2+(1-4)2+(3-4)2+(5-4)2+(10-4)2+(4-4)2+(4-4)2=8,从平均分和积分的方差来看,运动员A的平均积分及积分的方差都比运动员B的小,也就是说,在前7场比赛过程中,运动员A的成绩较为优秀,且表现也较为稳定
15、.(2)表中平均分低于6.5分的运动员共有5个,其中平均分低于5分的运动员有3个,平均分不低于5分且低于6.5分的运动员有2个,从这5个数据中任取2个,基本事件总数n=10,从3个运动员中任取2人的事件数为3,至少1个运动员平均分不低于5分的对立事件是取到的两人的平均分都低于5分,至少1个运动员平均分不低于5分的概率P=1-.(3)尽管此时还有4场比赛没有进行,但这里我们可以假设每位选手在各自的11场比赛中发挥的水平大致相同,因而可以把前7场比赛的成绩看作总体的一个样本,并由此估计每位运动员最后的成绩,从已结束的7场比赛的积分来看,运动员A的成绩最为出色,而且表现最为稳定,故预测A运动员获得最
16、后的冠军,而运动员B和C平均分相同,但运动员C得分整体呈下降趋势,所以预测运动员C将获得亚军.7.解 (1)由题设可知,(0.150+0.200+x+0.050+0.025)2=1,解得x=0.075.(2)估计该校高一学生每周课外阅读的平均时间为:=10.3+30.4+50.15+70.1+90.05=3.40(小时).(3)由题意知从第三组、第四组、第五组中依次分别抽取3名学生,2名学生和1名学生,设第三组抽到的3名学生是A1,A2,A3,第四组抽取的学生是B1,B2,第五组抽到的学生是C1,则一切可能的结果组成的基本事件空间为:=(A1,A2),(A1,A3),(A2,A3),(A1,B
17、1),(A1,B2),(A1,C1),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共由15个基本事件组成,设“第三组中恰有一名学生被抽取”为事件A,则A中有9个基本事件,故第三组中恰有一名学生被抽取的概率P(A)=.8.解 (1)由频率分布表得,解得a=20,b=0.35,由频率分布表可得随机抽取一考生恰为优秀生的概率为:P=0.25+0.15=0.4.(2)按成绩分层抽样抽取20人时,优秀生应抽取200.4=8(人).(3)8人中,成绩在80,90)的有200.25=5(人),成绩在90,10
18、0的有200.15=3(人),从8个人中选2个人,结果共有n=28种选法,其中至少有一人成绩在90,100的情况有两种:可能有1人成绩在90,100,也可能有2人成绩在90,100,所以共有53+3=18(种),故至少一人的成绩在90,100的概率P=.9.解 (1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,赞成人数的频率p1=,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,赞成人数的频率p2=.,根据样本估计总体思想可知月收入不低于30(百元)的人群对该措施持肯定态度的比月收入低于20(百元)的人群中持肯定态度的比例要高.(2)将月收入在10,20)中,不赞成的3人记为a1,a2,a3,赞成的2人记为a4,a5,月收入在60,70)中不赞成的1人记为b1,赞成的3人记为b2,b3,b4,从月收入在10,20)和60,70的人中各随机抽取1人,基本事件总数:n=54=20,其中事件A“抽取的两个人恰好对该措施一个赞成一个不赞成”共包含:(a1,b2),(a1,b3),(a1,b4),(a2,b2),(a2,b3),(a2,b4),(a3,b2),(a3,b3),(a3,b4),(a4,b1),(a5,b1),共11个,抽取的两个人恰好对该措施一个赞成一个不赞成的概率P=.