ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:608KB ,
资源ID:120075      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-120075-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(四川省射洪县射洪中学高二数学《2.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

四川省射洪县射洪中学高二数学《2.doc

1、教学过程:一、复习引入: 来源:Zxxk.Com1抛物线定义:平面内与一个定点F和一条定直线的距离相等的点的轨迹叫做抛物线 定点F叫做抛物线的焦点,定直线叫做抛物线的准线 2抛物线的标准方程: 相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的,即 不同点:(1)图形关于X轴对称时,X为一次项,Y为二次项,方程右端为、左端为;图形关于Y轴对称时,X为二次项,Y为一次项,方程右端为,左端为 (2)开口方向在X轴(或Y轴)正向时,焦点在X轴(或Y轴)的正半轴上,方程右端取正号;开口在X轴(或Y轴)

2、负向时,焦点在X轴(或Y轴)负半轴时,方程右端取负号 二、讲解新课:抛物线的几何性质1范围因为p0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x0,所以这条抛物线在y轴的右侧;当x的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸2对称性以y代y,方程不变,所以这条抛物线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴3顶点抛物线和它的轴的交点叫做抛物线的顶点在方程中,当y=0时,x=0,因此抛物线的顶点就是坐标原点4离心率抛物线上的点M与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e表示由抛物线的定义可知,e=1对于其它几种形式的方程,列表如下:标准方程图

3、形顶点对称轴焦点准线离心率轴轴轴来源:学&科&网Z&X&X&K轴注意强调的几何意义:是焦点到准线的距离抛物线不是双曲线的一支,抛物线不存在渐近线通过图形的分析找出双曲线与抛物线上的点的性质差异,当抛物线上的点趋向于无穷远时,抛物线在这一点的切线斜率接近于对称轴所在直线的斜率,也就是说接近于和对称轴所在直线平行,而双曲线上的点趋向于无穷远时,它的切线斜率接近于其渐近线的斜率 附:抛物线不存在渐近线的证明(反证法)假设抛物线y22px存在渐近线ymxn,A(x,y)为抛物线上一点,A0(x,y1)为渐近线上与A横坐标相同的点如图,则有和y1mxn 当m0时,若x,则来源:学科网ZXXK当m0时,当

4、x,则这与ymxn是抛物线y22px的渐近线矛盾,所以抛物线不存在渐近线三、讲解范例:例1 已知抛物线关于x轴为对称,它的顶点在坐标原点,并且经过点,求它的标准方程,并用描点法画出图形分析:首先由已知点坐标代入方程,求参数p解:由题意,可设抛物线方程为,因为它过点,所以 ,即 因此,所求的抛物线方程为将已知方程变形为,根据计算抛物线在的范围内几个点的坐标,得x012来源:Zxxk.Com34y022.83.54描点画出抛物线的一部分,再利用对称性,就可以画出抛物线的另一部分点评:在本题的画图过程中,如果描出抛物线上更多的点,可以发现这条抛物线虽然也向右上方和右下方无限延伸,但并不能像双曲线那样

5、无限地接近于某一直线,也就是说,抛物线没有渐近线例2 探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯的圆的直径60cm,灯深为40cm,求抛物线的标准方程和焦点位置分析:这是抛物线的实际应用题,设抛物线的标准方程后,根据题设条件,可确定抛物线上一点坐标,从而求出p值解:如图,在探照灯的轴截面所在平面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x轴垂直于灯口直径设抛物线的标准方程是 (p0)由已知条件可得点A的坐标是(40,30),代入方程,得,即 所求的抛物线标准方程为例3 过抛物线的焦点F任作一条直线m,交这抛物线于A、B两点,求证:以AB为直径的圆和

6、这抛物线的准线相切分析:运用抛物线的定义和平面几何知识来证比较简捷证明:如图设AB的中点为E,过A、E、B分别向准线引垂线AD,EH,BC,垂足为D、H、C,则AFAD,BFBCABAFBFADBC2EH所以EH是以AB为直径的圆E的半径,且EHl,因而圆E和准线相切四、课堂练习:1过抛物线的焦点作直线交抛物线于,两点,如果,那么=( B )(A)10 (B)8 (C)6 (D)42已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为( B )(A)3 (B)4 (C)5 (D)63过抛物线的焦点作直线交抛物线于、两点,若线段、的长分别是、,则=( C )(A) (B) (C) (D)4过

7、抛物线焦点的直线它交于、两点,则弦的中点的轨迹方程是 _ (答案: ) 5.定长为的线段的端点、在抛物线上移动,求中点到轴距离的最小值,并求出此时中点的坐标(答案: , M到轴距离的最小值为)五、小结 :抛物线的离心率、焦点、顶点、对称轴、准线、中心等 六、课后作业:1根据下列条件,求抛物线的方程,并画出草图(1)顶点在原点,对称轴是x轴,顶点到焦点的距离等于8(2)顶点在原点,焦点在y轴上,且过P(4,2)点(3)顶点在原点,焦点在y轴上,其上点P(m,3)到焦点距离为52过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在准线上的射影是A2,B2,则A2FB2等于3抛物线顶点在原点,以坐标轴为对称轴,过焦点且与y轴垂直的弦长为16,求抛物线方程4以椭圆的右焦点,F为焦点,以坐标原点为顶点作抛物线,求抛物线截椭圆在准线所得的弦长5有一抛物线型拱桥,当水面距拱顶4米时,水面宽40米,当水面下降1米时,水面宽是多少米?习题答案:1(1)y232x(2)x28y(3)x28y2903x216 y45米七、板书设计(略)八、课后记: 附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看)学校名录参见:版权所有:高考资源网()版权所有:高考资源网()

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3