ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:349.50KB ,
资源ID:119771      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-119771-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《名校推荐》福建省泉州市第五中学高二数学学案:选修2-3 1-3 二项式定理.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《名校推荐》福建省泉州市第五中学高二数学学案:选修2-3 1-3 二项式定理.doc

1、“杨辉三角”中的一些秘密班级_姓名_阅读材料:杨辉三角的历史易系辞上:“河出图,洛出书,圣人则之。”相传,伏羲在黄河边思考天地的至理,突然,一匹龙马从黄河中奔腾而出,伏羲发现,龙马的身上又一幅图画,伏羲从图中领悟了八卦,这幅图就是传说中的河图。大禹在治理洪水时,有一只大乌龟从洛水中浮出,背上刻有纹理,大禹依据这些纹理划分了九州,这些纹理就是洛书。河图,洛书是我们华夏文化的起源,同时,他们也是世界上最古老的数阵。数阵的概念与数列很相似,我们将数字按一定的顺序排列成图形就构成了数阵。 杨辉三角就是一个特殊的数阵,其最早出现在北宋贾宪的“开方作法本源图”中,南宋时期的杨辉在他的著作详解九章算术中引用

2、了这幅图,并注明了“出释锁算书,贾宪用此术”。元朝的朱世杰对杨辉三角作了进一步研究,从中推导出了高阶差分数列的求和。在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了这个三角,所以“杨辉三角”在国外又被称为“帕斯卡三角”。世界著名数学家华罗庚在他的从杨辉三角谈起中将其称为“杨辉三角” ,于是才有了“杨辉三角”的说法。近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle)杨辉三角在整个数学史中扮演着重要的角色,宋朝的贾宪用它手算高次方根,元朝的朱世杰用它研究高阶差分数列(垛积术),牛顿用它算微积分。,华罗庚老先生思路更广,差分方程,无穷

3、级数都谈到了。同学们,我们又能发现杨辉三角的哪些秘密呢?一:回顾杨辉三角第 1行 1第 2行 1 1第 3行 1 2 1第 4行 1 3 3 1第 5行 1 4 6 4 1第 6行 1 5 10 10 5 1第 7行 1 6 15 20 15 6 1第8行_.我们已经学习过杨辉三角的哪些性质?_三:初探杨辉三角研究角度一: 第 1行 1第 2行 1 1第 3行 1 2 1第 4行 1 3 3 1第 5行 1 4 6 4 1第 6行 1 5 10 10 5 1第 7行 1 6 15 20 15 6 1第 8行 1 7 21 35 35 21 7 1第 9行 1 8 28 56 70 56 28

4、8 1第10行 1 9 36 84 126 126 84 36 9 1第11行 1 10 45 120 210 252 210 120 45 10 1第12行 1 11 55 165 330 462 462 330 165 55 11 1第13行 1 12 66 220 495 792 924 792 495 220 66 12 1第14行_.第n+1行_归纳:用组合数表示杨辉三角:猜想:结论1:_结论2:_结论3:_结论4:_结论5:_证明:_四:再探杨辉三角研究角度二第 1行 1第 2行 1 1第 3行 1 2 1第 4行 1 3 3 1第 5行 1 4 6 4 1第 6行 1 5 10

5、10 5 1第 7行 1 6 15 20 15 6 1第 8行 1 7 21 35 35 21 7 1第 9行 1 8 28 56 70 56 28 8 1第10行 1 9 36 84 126 126 84 36 9 1第11行 1 10 45 120 210 252 210 120 45 10 1第12行 1 11 55 165 330 462 462 330 165 55 11 1第13行 1 12 66 220 495 792 924 792 495 220 66 12 1提示:将杨辉三角摆放成直角三角形,谈谈你们组的发现_研究角度三1 1 1 1 1 1 1 1 1 11 2 3 4

6、5 6 7 8 91 3 6 10 15 21 28 361 4 10 20 35 56 841 5 15 35 70 1261 6 21 56 1261 7 28 841 8 361 91提示:将杨辉三角摆放成以上形状,谈谈你们组的发现_五:三探杨辉三角11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 11 8 28 56 70 56 28 8 11 9 36 84 126 126 84 36 9 11 10 45 120 210 252 210 120 45 10 11 11 55 165 330 462 462 330 165 55 11 11 12 66 220 495 792 924 792 495 220 66 12 1提示:将杨辉三角中的奇数涂黑,又会有怎样的发现?_六:小结与收获:通过本节课,你对数阵的研究有什么心得?_七:课后探索1查找资料,并阅读华罗庚的从杨辉三角说起,看看杨辉三角中还有哪些我们没发现的秘密。2用我们今天所学的探究方法,研究莱布尼茨三角,你能从个数阵中发现哪些秘密呢?

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3