1、浙江省金华市十校2020-2021学年高一数学下学期期末考试试题(含解析)一、选择题(共8小题,每题5分,共40分).1已知集合A1,1,下列选项正确的是()A1AB1ACAD0A2关于函数ysinx+cosx,以下说法正确的是()A在区间上是增函数B在区间上存在最小值C在区间上是增函数D在区间上存在最大值3现有3双不同的鞋子,从中随机取出2只,则取出的鞋都是左脚的概率是()ABCD4四名同学各掷骰子5次,记录每次骰子出现的点数并分别对每位同学掷得的点数进行统计处理,在四名同学以下的统计结果中,可以判断出该同学所掷骰子一定没有出现点数1的是()A平均数为4,中位数为5B平均数为5,方差为2.4
2、C中位数为4,众数为5D中位数为4,方差为2.85通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述所用的时间若用f(x)表示学生掌握和接受概念的能力(f(x)越大,表示学生的接受能力越强),x表示提出和讲授概念的时间(单位:min),长期的实验和分析表明,f(x)与x有以下关系:f(x)则下列说法错误的是()A讲授开始时,学生的兴趣递增;中间有段时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散B讲课开始后第5分钟比讲课开始第20分钟,学生的接受能力更强一点C讲课开始后第10分钟到第16分钟,学生的接受能力最强D需要13分钟讲解的复杂问题,老师可以在学生的注
3、意力至少达到55以上的情况下完成6我国古代数学名著九章算术中记载“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体在图1所示羡除中,ABCDEF,AB10,CD8,EF6,等腰梯形ABCD和等腰梯形ABFE的高分别为7和3,且这两个等腰梯形所在的平面互相垂直按如图2的分割方式进行体积计算,得该“羡除”的体积为()A84B66C126D1057在ABC中,过中线AD的中点E任作一直线分别交AB,AC于M,N两点,设,(m0,n0),则()Am+n为定值Bmn为定值C4m+n的最小值为Dm+4n的最小值为68设
4、函数f(x)的定义域为I,如果对任意x1I,都存在x2I,使得f(x1)+f(x2)0,称函数f(x)为“D函数”,则下列函数为“D函数”的是()Af(x)3xBf(x)ex+lnxCf(x)x22xDf(x)sinxcosx+sinxcosx二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得2分9在ABC中,角A,B,C所对的边分别是a,b,c,点P是其所在平面内一点,()A若,则点P在ABC的中位线上B若3,则P为ABC的重心C若a2+b2c2,则ABC为锐角三角形D若ccosBbcosC,则ABC是等腰三角
5、形10甲、乙两个质地均匀且完全一样的骰子,同时抛掷这两个骰子一次,记事件A为“两个骰子朝上一面的数字之和为奇数”,事件B为“甲骰子朝上一面的数字为奇数”,事件C为“乙骰子朝上一面的数字为偶数”,则()A事件A、B是相互独立事件B事件B、C是互斥事件CP(A)P(B)P(C)DP(ABC)11下列四个函数中,满足对任意正数a,b,c都有f(a+b+c)f(a)+f(b)+f(c)的是()Af(x)1+2sin2xBf(x)2xCf(x)Df(x)ln(x+1)12已知棱长为1的正方体ABCDA1B1C1D1,E,F分别是棱AD,CD上的动点,满足AEDF,则()A四棱锥B1BEDF的体积为定值B
6、四面体D1DEF表面积为定值C异面直线B1E和AF所成角为90D二面角D1EFB1始终小于60三、填空题:本题共4小题,每小题5分,共20分13(i)(+i) 14已知某校高一、高二、高三的学生志愿者人数分别为240,160,160现采用分层抽样的方法从中抽取n名同学去某敬老院参加慈善活动,其中高一年级被抽取的人数为12,则n 15已知|2|2,1,则与的夹角为 16在四棱台ABCDEFGH中,底面ABCD是边长为1的正方形,DE平面ABFE,AEDE,P为侧棱AE上的动点,若二面角HBCA与二面角PCDB的大小相等则PA的长为 四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或
7、演算步骤17已知函数()求函数f(x)的周期及图象的对称中心;()求函数f(x)在区间上的值域18在直角坐标系中,O是坐标原点,向量(3,1),(2,1),(a,b),其中a0,b0()若,求的最小值;()若与的夹角不超过45,求的取值范围19如图,在四棱锥PABCD中,AD平面PDC,ADBC,PDPB,AD1,BC3,CD4,PD2()求证:PCPD;()求直线AB与平面PBC所成角的余弦值20一家保险公司决定对推销员实行目标管理,即给推销员确定一个具体的销售目标确定的销售目标是否合适,直接影响到公司的经济效益如果目标定的过高,多数推销员完不成任务,会使推销员失去信心;如果目标定的太低,将
8、不利于挖掘推销员的工作潜力该保险公司随机抽取50名保险推销员,统计了其2020年的月均推销额(单位:万元),将数据按照12,14),14,16),22,24分成6组,制成频率分布直方图如下,其中14,16)组比12,14)组的频数多4()求频率分布直方图中a和b的值;()为调动推销员的积极性,公司设计了两种奖励方案方案一:奖励月均推销额进入前60%的员工;方案二:奖励月均推销额达到或超过平均数(同一组中的数据用该组区间中点值为代表)的员工你认为那种方案更好?21在一大型仓库里,存有大量的原料台球,其大小均匀,按红色与白色分为两堆,每种颜色中又有塑料和木头两种材质,对球进行简单随机抽样,获得抽样
9、数据如表:红色白色塑料球木质球塑料球木质球68个136个153个51个()分别估计等可能地从仓库所有红色球中随机抽取1个得到塑料球的概率,等可能地从仓库所有白色球中随机抽取1个得到塑料球的概率;()等可能地从仓库所有红色球中依次随机抽取2个,等可能地从仓库所有白色球中随机抽取1个,估计这3个球中恰有2个塑料球的概率22函数f(x)|2x+a9|,g(x)x2+(5a)x+2a,其中aR()若函数g(x)为偶函数,求函数f(g(x)7)的值域;()若不存在xR,使得f(x)6和g(x)6同时成立,求a的取值范围参考答案一、选择题(共8小题,每题5分,共40分).1已知集合A1,1,下列选项正确的
10、是()A1AB1ACAD0A【分析】直接利用元素与集合的关系,集合与集合的关系,判断选项即可解:1A,所以A正确;1A,所以B不正确;A,所以C不正确;0A,所以D不正确故选:A2关于函数ysinx+cosx,以下说法正确的是()A在区间上是增函数B在区间上存在最小值C在区间上是增函数D在区间上存在最大值【分析】将原式化简为y,再结合三角函数的性质,即可求解解:ysinx+cosx,函数y的单调递增区间为,故选项A错误,选项C正确,当 时,y取得最小值,故在区间上不存在最小值,故选项B错误,当时,y取得最大值,故在区间上不存在最大值,故选项D错误故选:C3现有3双不同的鞋子,从中随机取出2只,
11、则取出的鞋都是左脚的概率是()ABCD【分析】基本事件总数n15,取出的鞋都是左脚包含的基本事件个数m3,由此能求出取出的鞋都是左脚的概率解:现有3双不同的鞋子,从中随机取出2只,基本事件总数n15,取出的鞋都是左脚包含的基本事件个数m3,则取出的鞋都是左脚的概率是P故选:D4四名同学各掷骰子5次,记录每次骰子出现的点数并分别对每位同学掷得的点数进行统计处理,在四名同学以下的统计结果中,可以判断出该同学所掷骰子一定没有出现点数1的是()A平均数为4,中位数为5B平均数为5,方差为2.4C中位数为4,众数为5D中位数为4,方差为2.8【分析】依据数字特征的定义,依次对选项验证即可解:对于选项A,
12、1,2,5,6,6符合条件,故A错,对于选项B,若平均数为5且出现点数1,则只能为1,6,6,6,6,此时方差为4,故B对,对于选项C,1,2,4,5,5符合条件,故C错,对于选项D,1,4,4,5,6符合条件,故D错,故选:B5通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述所用的时间若用f(x)表示学生掌握和接受概念的能力(f(x)越大,表示学生的接受能力越强),x表示提出和讲授概念的时间(单位:min),长期的实验和分析表明,f(x)与x有以下关系:f(x)则下列说法错误的是()A讲授开始时,学生的兴趣递增;中间有段时间,学生的兴趣保持较理想的状态;随后学生的
13、注意力开始分散B讲课开始后第5分钟比讲课开始第20分钟,学生的接受能力更强一点C讲课开始后第10分钟到第16分钟,学生的接受能力最强D需要13分钟讲解的复杂问题,老师可以在学生的注意力至少达到55以上的情况下完成【分析】分段研究函数f(x)的单调性,由此可判断选项A,求出f(5)和f(20),比较大小即可判断选项B,由函数的单调性以及最值,即可判断选项C,计算学生注意力至少达到55以上的持续时间,与13分钟比较即可判断选项D解:由题意,f(x)当0x10时,f(x)0.1x2+2.6x+430.1(x13)2+59.9,故函数f(x)在(0,10上单调递增,最大值为f(10)59.9;当10x
14、16时,f(x)59,故f(x)为常数函数,当16x30时,f(x)3x+107,故f(x)单调递减,所以f(x)f(16)59,则讲授开始时,学生的兴趣递增;中间有段时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散,故选项A正确;因为f(5)0.1(513)2+59.959.96.453.5,f(20)320+1074753.5,所以讲课开始后第5分钟比讲课开始第20分钟,学生的接受能力更强一点,故选项B正确;由选项A的分析可知,讲课开始后第10分钟到第16分钟,学生的接受能力最强,故选项C正确;当0x10时,令f(x)55,则0.1(x13)24.9,所以(x13)249,解得x
15、20或x6,又0x10,故x6,当16x30时,令f(x)55,则3x+10755,解得x,因此学生达到(或超过)55的接受能力的时间为6,所以需要13分钟讲解的复杂问题,老师不可以在学生的注意力至少达到55以上的情况下完成,故选项D错误故选:D6我国古代数学名著九章算术中记载“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体在图1所示羡除中,ABCDEF,AB10,CD8,EF6,等腰梯形ABCD和等腰梯形ABFE的高分别为7和3,且这两个等腰梯形所在的平面互相垂直按如图2的分割方式进行体积计算,得该“羡
16、除”的体积为()A84B66C126D105【分析】由图可知,中间部分为棱柱,两侧为两个全等的四棱锥,再由棱柱与棱锥体积公式求解得答案解:按图2中的分割方式,中间为直三棱柱,直三棱柱的底面为直角三角形,两条直角边长分别为7和3,直三棱柱的高为6,则直三棱柱的体积;两侧为全等的两个四棱锥,四棱锥的底面为直角梯形,直角梯形的面积S,四棱锥的高为h3,则两个四棱锥的体积该“羡除”的体积为VV1+V263+2184故选:A7在ABC中,过中线AD的中点E任作一直线分别交AB,AC于M,N两点,设,(m0,n0),则()Am+n为定值Bmn为定值C4m+n的最小值为Dm+4n的最小值为6【分析】用 表示
17、出 和,由于、共线,可得,且0,解出 m,n,依次验证四个选项即可解:由题意可得+m,(m ),同理可得(n)由于、共线,且0(m )(n),m,(n)故 m,n,m+n+,mn均与取值有关,故AB错误;4m+n1+()+2,当且仅当时成立,故C正确;m+4n+()+2,当且仅当2时成立,故D错误故选:C8设函数f(x)的定义域为I,如果对任意x1I,都存在x2I,使得f(x1)+f(x2)0,称函数f(x)为“D函数”,则下列函数为“D函数”的是()Af(x)3xBf(x)ex+lnxCf(x)x22xDf(x)sinxcosx+sinxcosx【分析】由条件知D函数f(x)的值域关于原点对
18、称,从而求选项中函数的值域并观察即可解:对任意x1I,都存在x2I,使得f(x1)+f(x2)0,函数f(x)的值域关于原点对称,f(x)3x的值域为(0,+),故A错误,f(x)ex+lnx的值域为(,+),故B正确,f(x)x22x的值域为1,+),故C错误,f(x)sinxcosx+sinxcosxsinxcosx+(sinxcosx)2+(sinxcosx)+,sinxcosx,f(x)1,故D错误,故选:B二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得2分9在ABC中,角A,B,C所对的边分别是a,
19、b,c,点P是其所在平面内一点,()A若,则点P在ABC的中位线上B若3,则P为ABC的重心C若a2+b2c2,则ABC为锐角三角形D若ccosBbcosC,则ABC是等腰三角形【分析】设AC的中点为E,BC的中点为F,由已知可得判定A;设BC中点为G,由3,得判定B;举例说明C错误;利用正弦定理及两角差的正弦判定D解:对于A,由,得,即,设AC的中点为E,BC的中点为F,可得,则P、E、F三点共线,即点P在ABC的中位线上,故A正确;对于B,设BC中点为G,由3,得,即P为ABC的重心,故B正确;对于C,取a3,b5,c4,满足a2+b2c2,但a2+c2b2,ABC为直角三角形,故C错误;
20、对于D,由ccosBbcosC,得sinCcosBsinBcosC,sin(CB)0,0C,0B,CB,可得CB0,即BC,ABC为等腰三角形,故D正确故选:ABD10甲、乙两个质地均匀且完全一样的骰子,同时抛掷这两个骰子一次,记事件A为“两个骰子朝上一面的数字之和为奇数”,事件B为“甲骰子朝上一面的数字为奇数”,事件C为“乙骰子朝上一面的数字为偶数”,则()A事件A、B是相互独立事件B事件B、C是互斥事件CP(A)P(B)P(C)DP(ABC)【分析】利用列举法分别求出事件A,B,C,AB,ABC的概率,结合互斥事件、相互独立事件的定义直接求解解:甲、乙两个质地均匀且完全一样的骰子,同时抛掷
21、这两个骰子一次,基本事件总数n6636,记事件A为“两个骰子朝上一面的数字之和为奇数”,则事件A包含的基本事件有18个,分别为:(1,2),(1,4),(1,6),(2,1),(2,3),(2,5),(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5),P(A),事件B为“甲骰子朝上一面的数字为奇数”,则事件B包含的基本事件有18个,分别为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(5,1),(5,2)
22、,(5,3),(5,4),(5,5),(5,6),P(B),事件C为“乙骰子朝上一面的数字为偶数”,则事件C包含的基本事件有18个,分别为:(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),P(C),事件AB包含的基本事件有9个,分别为:(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),P(AB),P(AB)P(A)P(B),事件A、B是相互独立事件,故A正确;事件B与C能
23、同时发生,故事件B与C不是互斥事件,故B错误;P(A)P(B)P(C),故C正确;ABC包包含的基本事件有9个,分别为:(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),P(ABC)故D错误故选:AC11下列四个函数中,满足对任意正数a,b,c都有f(a+b+c)f(a)+f(b)+f(c)的是()Af(x)1+2sin2xBf(x)2xCf(x)Df(x)ln(x+1)【分析】将a+b+c,a,b,c依次代入四个函数中,依次验证是否满足条件即可解:若f(x)1+2sin2x,则f(a+b+c)1+2sin2(a+b+c),f(a)+f
24、(b)+f(c)1+2sin2a+1+2sin2b+1+2sin2c3+2sin2a+2sin2b+2sin2c,故1+2sin2(a+b+c)33+2sin2a+2sin2b+2sin2c,故对任意正数a,b,c都有f(a+b+c)f(a)+f(b)+f(c),故A正确,若f(x)2x,令abc1,f(a+b+c)f(3)8,f(a)+f(b)+f(c)2+2+26,故B错误,若f(x),则f(a+b+c),f(a)+f(b)+f(c)+,且()2(+)2(a+b+c)(a+b+c+2+2+2)0,故+,故对任意正数a,b,c都有f(a+b+c)f(a)+f(b)+f(c),故C正确,若f(
25、x)ln(x+1),则f(a+b+c)ln(a+b+c+1),f(a)+f(b)+f(c)ln(a+1)+ln(b+1)+ln(c+1)ln(a+1)(b+1)(c+1)ln(a+b+c+1+abc+ab+ac+bc),故ln(a+b+c+1)ln(a+b+c+1+abc+ab+ac+bc),故对任意正数a,b,c都有f(a+b+c)f(a)+f(b)+f(c),故D正确,故选:ACD12已知棱长为1的正方体ABCDA1B1C1D1,E,F分别是棱AD,CD上的动点,满足AEDF,则()A四棱锥B1BEDF的体积为定值B四面体D1DEF表面积为定值C异面直线B1E和AF所成角为90D二面角D1
26、EFB1始终小于60【分析】A,利用SSABCDSABESBCF1FC1(AE+BF),即可判断;B,过D作DHEF,连接D1H,则D1HEF,设AEDFx,四面体D1DEF表面积为Sx1+1即可判断;C,建立空间直角坐标系,设AEx,利用xx+00,即可判断;D,可得二面角D1EFD就是DHD1,求得cosDHD1的范围即可判定解:对于A,因为四边形BEDF的面积为SSABCDSABESBCF1FC1(AE+BF)1(定值)四棱锥B1BEDF的体积为定值,故正确;对于B,过D作DHEF,连接D1H,则D1HEF,设AEDFx,则DH,D1H,S,四面体D1DEF表面积为Sx1+1,四面体D1
27、DEF表面积为定值,故正确对于C,如图建立空间直角坐标系,设AEx,则E(1x,0,0),F(0,x,0),B1(1,1,1),A(1,0,0),则,xx+00,异面直线B1E和AF所成角为90,故正确;对于D,由B可得二面角D1EFD就是DHD1,则cosDHD1,x(1x),cosDHD1,故错故选:ABC三、填空题:本题共4小题,每小题5分,共20分13(i)(+i)5【分析】利用复数的乘法运算法则求解即可解:(i)(+i)故答案为:514已知某校高一、高二、高三的学生志愿者人数分别为240,160,160现采用分层抽样的方法从中抽取n名同学去某敬老院参加慈善活动,其中高一年级被抽取的人
28、数为12,则n28【分析】利用分层抽样的性质直接求解解:某校高一、高二、高三的学生志愿者人数分别为240,160,160采用分层抽样的方法从中抽取n名同学去某敬老院参加慈善活动,其中高一年级被抽取的人数为12,则n12,解得n28故答案为:2815已知|2|2,1,则与的夹角为 【分析】利用向量的数量积公式,转化求解向量的夹角即可解:|2|2,1,|设与的夹角为,则cos,0,所以故答案为:16在四棱台ABCDEFGH中,底面ABCD是边长为1的正方形,DE平面ABFE,AEDE,P为侧棱AE上的动点,若二面角HBCA与二面角PCDB的大小相等则PA的长为 【分析】如图,作辅助线,可得PDM为
29、二面角PCDB的平面角,HKN为二面角HBCA的平面角,再根据题意可得,设PAx,由此建立关于x的方程,解出即可解:DE平面ABFE,DEAB,又ABAD,AB平面ADHE,过点P作PMAD,过点H作HNAD,则PM平面ABCD,HN平面ABCD,过点N作NKBC,则PDM为二面角PCDB的平面角,HKN为二面角HBCA的平面角,又AEDE,PAD45,由题意,设PAx,则,解得故答案为:四、解答题:本题共6小题,共70分解答应写出文字说明、证明过程或演算步骤17已知函数()求函数f(x)的周期及图象的对称中心;()求函数f(x)在区间上的值域【分析】利用二倍角公式和辅助角公式化简解析式,再通
30、过ysinx的性质求f(x)的周期、对称中心、值域;解:(I),所以最小正周期为,所有的周期为k,kZ且k0;令,得,所以对称中心为;(II)因为,所以,所以f(x)的值域为1,218在直角坐标系中,O是坐标原点,向量(3,1),(2,1),(a,b),其中a0,b0()若,求的最小值;()若与的夹角不超过45,求的取值范围【分析】()利用向量垂直的坐标表示,得到a+2b5,然后变形为(a+1)+2b6,将所求式子变形为(),利用基本不等式求解最值即可;()利用平面向量夹角的坐标表示以及向量夹角的取值范围,得到a,b的不等式关系,利用换元法,令,则t0,得到,求解不等式组,即可得到答案解:()
31、因为向量(3,1),(2,1),(a,b),则,因为,则0,故a+2b5,则(a+1)+2b6,所以(),当且仅当且a+2b5,即时取等号,所以的最小值为;()因为(2,1),(a,b),则,因为与的夹角不超过45,则,即,令,则t0,所以,故,解得,又t0,所以的取值范围为19如图,在四棱锥PABCD中,AD平面PDC,ADBC,PDPB,AD1,BC3,CD4,PD2()求证:PCPD;()求直线AB与平面PBC所成角的余弦值【分析】()由AD平面PDC,得ADPD,由BCAD,得PDBC,再由PDPB,得到PD平面PBC即可证明PCPD()过点D作AB的平行线交BC于点F,连结PF,则D
32、F与平面PBC所成的角等于AB与平面PBC所成的角,由PD平面PBC,得到DFP为直线DF和平面PBC所成的角,由此能求出直线AB与平面PBC所成角的正弦值解:()证明:因为AD平面PDC,直线PD平面PDC,所以ADPD又因为BCAD,所以PDBC,又PDPB,所以PD平面PBC解:()过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角因为PD平面PBC,故PF为DF在平面PBC上的射影,所以DFP为直线DF和平面PBC所成的角由于ADBC,DFAB,故BFAD1,由已知,得CFBCBF2又ADDC,故BCDC,在RtDPF中,可得sinDFP
33、所以,直线AB与平面PBC所成角的正弦值为20一家保险公司决定对推销员实行目标管理,即给推销员确定一个具体的销售目标确定的销售目标是否合适,直接影响到公司的经济效益如果目标定的过高,多数推销员完不成任务,会使推销员失去信心;如果目标定的太低,将不利于挖掘推销员的工作潜力该保险公司随机抽取50名保险推销员,统计了其2020年的月均推销额(单位:万元),将数据按照12,14),14,16),22,24分成6组,制成频率分布直方图如下,其中14,16)组比12,14)组的频数多4()求频率分布直方图中a和b的值;()为调动推销员的积极性,公司设计了两种奖励方案方案一:奖励月均推销额进入前60%的员工
34、;方案二:奖励月均推销额达到或超过平均数(同一组中的数据用该组区间中点值为代表)的员工你认为那种方案更好?【分析】(1)根据已知条件14,16)组比12,14)组的频数多4,以及图中所有小矩形的面积之和等于1,即可求解(2)根据已知条件,分别求出方案一的人数,并与方案二的人数比较,即可求解解:(1)由频率分布直方图的性质,图中所有小矩形的面积之和等于1,又14,16)组比12,14)组的频数多4,解得a0.03,b0.07(2)方案一,奖励月均推销额进入前60%的员工,样本容量为50,能获得奖励员工人数为5060%30,方案二,奖励月均推销额达到或超过平均数,根据频率分布直方图,可得月均推销额
35、的平均数为(0.03213+0.07215+0.12217+0.14219+0.1221+0.04223)18.32,月均推销额低于18万的频率为2(0.03+0.07+0.12)0.44,本次抽样样本容量为50名保险推销员,月均推销额低于18万的人数为500.4422,月均推销额高于18万的人数比小于28,综上所述,对比两种奖励方案,应选方案一,更多人员获得奖励21在一大型仓库里,存有大量的原料台球,其大小均匀,按红色与白色分为两堆,每种颜色中又有塑料和木头两种材质,对球进行简单随机抽样,获得抽样数据如表:红色白色塑料球木质球塑料球木质球68个136个153个51个()分别估计等可能地从仓库
36、所有红色球中随机抽取1个得到塑料球的概率,等可能地从仓库所有白色球中随机抽取1个得到塑料球的概率;()等可能地从仓库所有红色球中依次随机抽取2个,等可能地从仓库所有白色球中随机抽取1个,估计这3个球中恰有2个塑料球的概率【分析】()利用等可能事件概率计算公式直接求解()利用古典概型、排列组合能估计这3个球中恰有2个塑料球的概率解:()等可能地从仓库所有红色球中随机抽取1个,基本事件总数n168+136204,其中得到塑料球包含的基本事件个数m168,得到塑料球的概率为P1,等可能地从仓库所有白色球中随机抽取1个,基本事件总数n2153+51204,其中得到塑料球包含的基本事件个数m2153,得
37、到塑料球的概率为P2()等可能地从仓库所有红色球中依次随机抽取2个,等可能地从仓库所有白色球中随机抽取1个,基本事件总数n4120902,这3个球中恰有2个塑料球包含的基本事件个数:m+1531122,估计这3个球中恰有2个塑料球的概率为P22函数f(x)|2x+a9|,g(x)x2+(5a)x+2a,其中aR()若函数g(x)为偶函数,求函数f(g(x)7)的值域;()若不存在xR,使得f(x)6和g(x)6同时成立,求a的取值范围【分析】( I )先由g(x)为偶函数求出a,再求出函数f(g(x)7)的解析式即可得函数f(g(x)7)的值域;()题意转化为f(x)6和g(x)6解集的并集为
38、R再结合不等式g(x)6的解分情况讨论即可解:( I )g(x)为偶函数,g(x)g(x),解得a5,g(x)x2+10,g(x) 的值域为(,10,g(x)7(,3而f(g(x)7)的值域为0,4(II)根据题意,即f(x)6和g(x)6解集的并集为 R先解 g(x)6,得(x2)(x+a3)0(*)当a1时,(*)式显然成立,原命题成立;当a1时,(*)式解集为(,23a,+),只需当2x3a时,|2x+a9|6即可解得32xa152x,即1a1523a,即得a1,1)当a1时,(*)式解集为(,3a2,+),只需当3ax2时,|2x+a9|6即可解得32xa152x,即323aa1522,即得a(1,11综上a的取值范围为1,11