1、课时跟踪检测(三十) 等比数列及其前n项和 (二)重点高中适用作业A级保分题目巧做快做1.在等比数列an中,已知a36,a3a5a778,则a5()A12B18C24 D36解析:选Ba3a5a7a3(1q2q4)6(1q2q4)781q2q413q23,所以a5a3q26318.2.(2018湖南师大附中月考)已知各项不为0的等差数列an满足a6aa80,数列bn是等比数列,且b7a7,则b2b8b11()A1 B2C4 D8解析:选D由等差数列的性质,得a6a82a7.由a6aa80,可得a72,所以b7a72.由等比数列的性质得b2b8b11b2b7b12b238.3已知等比数列an的前
2、n项和为Sna2n1,则a的值为()A B.C D.解析:选A当n2时,anSnSn1a2n1a2n2a2n2,当n1时,a1S1a,所以a,所以a.4(2018云南11校跨区调研)已知数列an是等比数列,Sn为其前n项和,若a1a2a34,a4a5a68,则S12()A40 B60C32 D50解析:选B由等比数列的性质可知,数列S3,S6S3,S9S6,S12S9是等比数列,即数列4,8,S9S6,S12S9是等比数列,因此S9S616,S612,S12S932,S1232161260.5已知等比数列an的前n项和为Sn,且a1a3,a2a4,则()A4n1 B4n1C2n1 D2n1解析
3、:选D设等比数列an的公比为q,则q,所以2n1.6已知等比数列an中,a33,a10384,则该数列的通项公式an_.解析:设等比数列an的公比为q,则,得q7128,即q2,把q2代入,得a1,所以数列an的通项公式为ana1qn12n132n3.答案:32n37在等比数列an中,an0,a5a115,a4a26,则a3_.解析:a5a115,a4a26.(q1)两式相除得,即2q25q20,q2或q,当q2时,a11;当q时,a116(舍去)a31224.答案:48.(2018合肥质检)已知数列an中,a12,且4(an1an)(nN*),则其前9项和S9_.解析:由已知,得a4anan
4、14a,即a4anan14a(an12an)20,所以an12an,所以数列an是首项为2,公比为2的等比数列,故S921021 022.答案:1 0229(2018兰州诊断性测试)在公差不为零的等差数列an中,a11,a2,a4,a8成等比数列(1)求数列an的通项公式;(2)设bn2an,Tnb1b2bn,求Tn.解:(1)设等差数列an的公差为d,则依题意有解得d1或d0(舍去),an1(n1)n.(2)由(1)得ann,bn2n,2,bn是首项为2,公比为2的等比数列,Tn2n12.10.(2017全国卷)已知等差数列an的前n项和为Sn,等比数列bn的前n项和为Tn,a11,b11,
5、a2b22.(1)若a3b35,求bn的通项公式;(2)若T321,求S3.解:(1)设an的公差为d,bn的公比为q,则an1(n1)d,bnqn1.由a2b22得dq3.由a3b35得2dq26. 联立解得(舍去)或因此bn的通项公式为bn2n1.(2)由b11,T321,得q2q200,解得q5或q4.当q5时,由得d8,则S321.当q4时,由得d1,则S36.B级拔高题目稳做准做1.(2018天津实验中学月考)设an是由正数组成的等比数列,公比q2,且a1a2a3a30230,则a3a6a9a30()A210 B220C216 D215解析:选B因为a1a2a3a,a4a5a6a,a
6、7a8a9a,a28a29a30a,所以a1a2a3a4a5a6a7a8a9a28a29a30(a2a5a8a29)3230.所以a2a5a8a29210.则a3a6a9a30(a2q)(a5q)(a8q)(a29q)(a2a5a8a29)q10210210220,故选B.2.(2018郑州第一次质量预测)已知数列an满足a1a2a3an2n2(nN*),且对任意nN*都有t,则实数t的取值范围为()A. B.C. D.解析:选D依题意得,当n2时,an2n2(n1)222n1,又a1212211,因此an22n1,数列是以为首项,为公比的等比数列,等比数列的前n项和等于0,nN*,且a3a2
7、n322n(n2),则当n1时,log2a1log2a2log2a2n1_.解析:由等比数列的性质,得a3a2n3a22n,从而得an2n.log2a1log2a2log2a2n1log2(a1a2n1)(a2a2n2)(an1an1)anlog22n(2n1)n(2n1)2n2n.答案:2n2n5.(2018广州综合测试)已知数列an的前n项和为Sn,且Sn2an2(nN*)(1)求数列an的通项公式;(2)求数列Sn的前n项和Tn.解:(1)当n1时,S12a12,即a12a12,解得a12.当n2时,anSnSn1(2an2)(2an12)2an2an1,即an2an1,所以数列an是首项为2,公比为2的等比数列所以an22n12n(n2)又n1时也符合上式,所以an2n(nN*)(2)由(1),知Sn2an22n12,所以TnS1S2Sn22232n12n2n2n242n.6(2018黄冈调研)在数列an中,a12,an1an(nN*)(1)证明:数列是等比数列,并求数列an的通项公式;(2)设bn,若数列bn的前n项和是Tn,求证:Tn2.证明:(1)由题设得,又2,所以数列是首项为2,公比为的等比数列,所以2n122n,ann22n.(2)bn,因为对任意nN*,2n12n1,所以bn.所以Tn122.