1、考点3 均值与方差在决策中的应用(2018全国卷(理)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验设每件产品为不合格品的概率都为p(0p1),且各件产品是否为不合格品相互独立(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用若不对该箱余
2、下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【解析】(1)20件产品中恰有2件不合格品的概率为f(p)C202p2(1p)18(0p1)因此f(p)C2022p(1p)1818p2(1p)172C202p(1p)17(110p),0p1.令f(p)0,得p0.1.当p(0,0.1)时,f(p)0;当p(0.1,1)时,f(p)0.所以f(p)的最大值点为p00.1.(2)由(1)知,p0.1.令Y表示余下的180件产品中的不合格品件数,依题意知YB(180,0.1),X20225Y,即X4025Y.所以E(X)E(4025Y)4025E(Y)40251800.1490.若对余下的产品作检验,则这一箱产品所需要的检验费用为400元由于E(X)400,故应该对余下的产品作检验【答案】见解析