ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:687.50KB ,
资源ID:1191564      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1191564-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020版新一线高考文科数学(北师大版)一轮复习教学案:第9章 第4节 变量间的相关关系、统计案例 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020版新一线高考文科数学(北师大版)一轮复习教学案:第9章 第4节 变量间的相关关系、统计案例 WORD版含答案.doc

1、第四节变量间的相关关系、统计案例考纲传真1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.了解独立性检验的基本思想、方法及其初步应用.4.了解回归分析的基本思想、方法及简单应用1相关性(1)线性相关若两个变量x和y的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关的(2)非线性相关若所有点看上去都在某条曲线(不是一条直线)附近波动,则称此相关为非线性相关的(3)不相关如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的2最小二乘估计(1)最小二乘法如果有n个点(x1,y1

2、),(x2,y2),(xn,yn)可以用下面的表达式来刻画这些点与直线yabx的接近程度:y1(abx1)2y2(abx2)2yn(abxn)2.使得上式达到最小值的直线yabx就是我们所要求的直线,这种方法称为最小二乘法(2)线性回归方程方程ybxa是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),(xn,yn)的线性回归方程,其中a,b是待定参数3回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法(2)样本点的中心对于一组具有线性相关关系的数据(x1,y1),(x2,y2),(xn,yn)中,(,)称为样本点的中心(3)相关系数rr;当r0时,称两个

3、变量正相关当r2.706时,有90%的把握判定变量A,B有关联;(3)当23.841时,有95%的把握判定变量A,B有关联;(4)当26.635时,有99%的把握判定变量A,B有关联1线性回归方程ybxa一定过样本点的中心(,)2由回归直线求出的数据是估算值,不是精确值基础自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系()(2)某同学研究卖出的热饮杯数y与气温x()之间的关系,得回归方程y2.352x147.767,则气温为2时,一定可卖出143杯热饮()(3)因为由任何一组观测值都可以求得一个线性回归方程

4、,所以没有必要进行相关性检验()(4)若事件A,B关系越密切,则由观测数据计算得到的2的值越小()答案(1)(2)(3)(4)2.(教材改编)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力()A回归分析B均值与方差C独立性检验D概率C“近视”与“性别”是两类变量,其是否有关,应用独立性检验判断3(教材改编)已知变量x与y正相关,且由观测数据算得样本平均数3,3.5,则由该观测数据算得的线性回归方程可能是()Ay0.4x2.3By2x2.4Cy2x9.5Dy0.3x4.4A因为变量x和y正相关

5、,排除选项C,D又样本中心(3,3.5) 在回归直线上,排除B,选项A满足4下面是22列联表:则表中a,b的值分别为()y1y2合计x1a2173x2222547合计b46120A94,72B52,50C52,74D74,52Ca2173,a52.又a22b,b74.5某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用22列联表进行独立性检验,经计算27.069,则所得到的统计学结论是:有多少的把握认为“学生性别与支持该活动有关系”()附:P(2x0)0.1000.0500.0250.0100.001x02.7063.8415.0246.63510.828A0.1%

6、B1% C99%D99.9%C因为7.069与附表中的6.635最接近,所以得到的统计学结论是:有10.0100.9999%的把握认为“学生性别与支持该活动有关系”相关关系的判断1已知变量x和y满足关系y0.1x1,变量y与z正相关下列结论中正确的是()Ax与y正相关,x与z负相关Bx与y正相关,x与z正相关Cx与y负相关,x与z负相关Dx与y负相关,x与z正相关C因为y0.1x1的斜率小于0,故x与y负相关因为y与z正相关,可设zbya,b0,则zbya0.1bxba,故x与z负相关2(2019广州模拟)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)的条形统计图. 以下

7、结论不正确的是()A逐年比较,2008年减少二氧化硫排放量的效果最显著B2007年我国治理二氧化硫排放显现成效 C2006年以来我国二氧化硫年排放量呈减少趋势 D2006年以来我国二氧化硫年排放量与年份正相关D从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确; 2007年二氧化硫排放量较2006年降低了很多,B选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,C选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误, 故选D3(2019日照模拟)变量X与Y相对应的

8、一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1)r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则()参考公式:线性相关系数rAr2r10B0r2r1Cr20r1Dr1r2C由己知中的数据可知:第一组数据正相关,则相关系数大于零,第二组数据负相关,则相关系数小于零,故选C规律方法判定两个变量正、负相关性的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关(2)相关系

9、数:r0时,正相关;r0时,负相关(3)线性回归方程中:b0时,正相关;b0时,负相关线性回归分析及应用【例1】(2018全国卷)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型根据2000年至2016年的数据(时间变量t的值依次为1,2,17)建立模型:y30.413.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,7)建立模型:y9917.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?

10、并说明理由解(1)利用模型,可得该地区2018年的环境基础设施投资额的预测值为y30.413.519226.1(亿元)利用模型,可得该地区2018年的环境基础设施投资额的预测值为y9917.59256.5(亿元)(2)利用模型得到的预测值更可靠理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y30.413.5t上下,这说明利用2000年至2016年的数据建立的线性模型不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施

11、投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y9917.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型得到的预测值更可靠()从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型得到的预测值226.1亿元的增幅明显偏低,而利用模型得到的预测值的增幅比较合理,说明利用模型得到的预测值更可靠规律方法线性回归分析问题的类型及解题方法(1)求线性回归方程:利用公式,求出回归系数b,a.待定系数法:利用回归直线过样本点中心求系数(2)利用回归方程进行预测:把回归直线方程看作一次函数,求函数值(3)利用回归直线判断正、负相关:决

12、定正相关还是负相关的是系数b. (2016全国卷)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图注:年份代码17分别对应年份20082014(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量附注:参考数据:yi9.32,tiyi40.17,0.55,2.646.参考公式:相关系数r,回归方程yabt中斜率和截距的最小二乘估计公式分别为:b,ab.解(1)由折线图中数据和附注中参考数据得4, (ti)228,0.55, (ti)(yi)tiyiyi40.

13、1749.322.89,r0.99.因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系(2)由1.331及(1)得b0.103,ab1.3310.10340.92.所以,y关于t的回归方程为y0.920.10t.将2016年对应的t9代入回归方程得y0.920.1091.82.所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨独立性检验及应用【例2】(2017全国卷)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下: (1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量50 kg箱产量50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较附:P(2x0)0.0500.0100.001x03.8416.63510.828,2.解(1)旧养殖法的箱产量低于50 kg的频率为(0.0120.0140.0240.0340.040)50.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表箱产量6.635,所以有99%的把握认为两种生产方式的效率有差异

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3