ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:662KB ,
资源ID:1189874      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-1189874-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021版高考数学一轮复习 核心考点 精准研析 2.8 函数与方程 文(含解析)北师大版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021版高考数学一轮复习 核心考点 精准研析 2.8 函数与方程 文(含解析)北师大版.doc

1、函数与方程核心考点精准研析考点一判断函数零点所在区间1.已知实数a1,0b1,则函数f(x)=ax+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)2.设函数f(x)=x-ln x,则函数y=f(x)()A.在区间,(1,e)内均有零点B.在区间,(1,e)内均无零点C.在区间内有零点,在区间(1,e)内无零点D.在区间内无零点,在区间(1,e)内有零点3.(2020扬州模拟)设函数y=x2与y=的图像交点为(x0,y0),则x0所在区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.若ab1,0b1,f(x)=ax+x-b,所以f(

2、-1)=-1-b0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.选D.令f(x)=0得x=ln x.作出函数y=x和y=ln x的图像,如图,显然y=f(x)在内无零点,在(1,e)内有零点.3.选B.因为函数y=x2与y=的图像交点为(x0,y0),则x0是方程x2=的解,也是函数f(x)=x2-的零点.因为函数f(x)在(0,+)上单调递增,f(2)=22-1=30,f(1)=1-2=-10,所以f(1)f(2)0.由零点存在性定理可知,方程的解在(1,2)内.4.选A.因为ab0,f(b)=(b-c)(b-a)0,由函数零点存在性定理可知:在区间(a,b),(b,c)内

3、分别存在零点,又函数f(x)是二次函数,最多有两个零点;因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内.确定函数零点所在区间的常用方法(1)利用函数零点存在性定理.(2)数形结合法.【秒杀绝招】用特殊值法可解T2.考点二确定函数零点的个数【典例】1.函数f(x)=|x-2|-ln x零点的个数为()A.0B.1C.2D.32.(2019全国卷)函数f(x)=2sin x-sin 2x在0,2的零点个数为 ()A.2B.3C.4D.53.已知函数y=f(x)是周期为2的周期函数,且当x-1,1时,f(x)=2|x|-1,则函数F(x)=f(x)-|lg x|的零点个数是世纪金榜导

4、学号()A.9B.10C.11D.18【解题导思】序号联想解题1由f(x)=|x-2|-ln x的零点,想到|x-2|=ln x.2由f(x)=2sin x-sin 2x,想到化简,令f(x)=0求sin x与cos x的值.3由F(x)=f(x)-|lg x|的零点个数,想到f(x)=|lg x|.【解析】1.选C.作出函数y=|x-2|与g(x)=ln x的图像,如图所示.由图像可知两个函数的图像有两个交点,即函数f(x)在定义域内有2个零点.2.选B.令f(x)=2sin x-sin 2x=2sin x-2sin xcos x=2sin x(1-cos x)=0,则sin x=0或cos

5、 x=1,又x0,2,所以x=0,2,共三个零点.3.选B.在同一平面直角坐标系内作出函数y=f(x)与y=|lg x|的大致图像如图,由图像可知,它们共有10个不同的交点,因此函数F(x)=f(x)-|lg x|的零点个数是10.函数零点个数的判断方法(1)直接求零点.(2)利用零点存在性定理再结合函数的单调性确定零点个数.(3)利用函数图像的交点个数判断.1.函数f(x)=3x+x3-2在区间(0,1)内的零点个数是()A.0B.1C.2D.3【解析】选B.由题意知f(x)单调递增,且f(0)=1+0-2=-10,即f(0)f(1)0且函数f(x)在(0,1)内连续不断,所以f(x)在区间

6、(0,1)内有一个零点.2.(2020上饶模拟)已知函数f(x)=函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2B.3C.4D.5【解析】选A.由已知条件可得g(x)=3-f(2-x)=函数y=f(x)-g(x)的零点个数即为函数y=f(x)与y=g(x)图像的交点个数,在平面直角坐标系内作出函数y=f(x)与y=g(x)的图像如图所示.由图可知函数y=f(x)与y=g(x)的图像有2个交点,所以函数y=f(x)-g(x)的零点个数为2.3.已知f(x)=则函数y=2f(x)2-3f(x)+1的零点个数是.【解析】由2f(x)2-3f(x)+1=0得f(x)

7、=或f(x)=1,作出函数y=f(x)的图像.由图像知y=与y=f(x)的图像有2个交点,y=1与y=f(x)的图像有3个交点.因此函数y=2f(x)2-3f(x)+1的零点有5个.答案:5考点三函数零点的应用命题精解读1.考什么:(1)由函数的零点有无、个数求参数值或范围、图像的交点、解方程、解不等式等问题.(2)考查数学运算、直观想象、逻辑推理等核心素养.2.怎么考:多以选择、填空题的形式考查.3.新趋势:以函数图像与性质为载体,图像与性质、数与形、求参数值或范围交汇考查.学霸好方法已知函数有零点求参数值或取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过

8、解不等式确定参数的取值范围.(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.由零点的个数求参数值或范围【典例】已知函数f(x)=g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是世纪金榜导学号()A.-1,0)B.0,+)C.-1,+)D.1,+)【解析】选C.画出函数f(x)的图像,y=ex在y轴右侧的图像去掉,再画出直线y=-x,并上下移动,可以发现当直线过点(0,1)时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程f(

9、x)=-x-a有两个解,也就是函数g(x)有两个零点,此时满足-a1,即a-1.已知函数零点个数求有关参数的取值范围问题的关键是什么?提示:关键是将函数零点个数问题转化为方程解的个数,或两个函数图像交点的个数问题,再去求解.由函数有无零点求参数【典例】若函数f(x)=4x-2x-a,x-1,1有零点,则实数a的取值范围是.世纪金榜导学号【解析】因为函数f(x)=4x-2x-a,x-1,1有零点,所以方程4x-2x-a=0在-1,1上有解,即方程a=4x-2x在-1,1上有解.方程a=4x-2x可变形为a=-,因为x-1,1,所以2x,令2x=t,t,a=-,0t-,0,-2,所以a=-的范围为

10、,所以实数a的取值范围是.答案:函数有(或无)零点如何求参数的范围?提示:先分离参数,再依据有(或无)零点得出等式(或不等式),最后得出结论.与函数零点有关的比较大小【典例】(2019承德模拟)已知a是函数f(x)=2x-lox的零点,若0x00C.f(x0)0D.f(x0)的符号不确定【解析】选C.在同一平面直角坐标系中作出函数y=2x,y=lox的图像,由图像可知,当0x0a时,有lox0,即f(x0)bcB.bcaC.cabD.bac【解析】选B.在同一直角坐标系中画出y=2x,y=log2x,y=x3与y=-x的图像,前3个图像与y=-x交点的横坐标依次为a,b,c.如图,可知bca.

11、故选B.3.已知函数f(x)=若关于x的方程f(x)=-x+a(aR)恰有两个互异的实数解,则a的取值范围为()A.B.C.1D.1【解析】选D.作出函数f(x)=的图像,以及直线y=-x,如图,关于x的方程f(x)=-x+a(aR)恰有两个互异的实数解,即为y=f(x)和y=-x+a(aR)的图像有两个交点,平移直线y=-x,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a=或a=,考虑直线y=-x+a(aR)与y=在x1时相切,ax-x2=1,由=a2-1=0,解得a=1(-1舍去),所以a的取值范围是.1.(2020包头模拟)已知函数f(x)=ln x+3x-8的零点x0a,b,且b-a=1,a,bN*,则a+b=()A.0B.2C.5D.7【解析】选C.因为f(2)=ln 2+6-8=ln 2-20,且函数f(x)=ln x+3x-8在(0,+)上为单调递增函数,所以x02,3,即a=2,b=3,所以a+b=5.2.已知a为正常数,f(x)=若x1,x2R,使f(x1)=f(x2),则实数a的取值范围是.【解析】由于a0,函数y=x2+ax+3在0,+)上单调递增,当x=0时有最小值为3.在x3,解得a2.答案:(2,+)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3