1、 基础题组练1.如图所示是水平放置的三角形的直观图,点D是ABC的BC边的中点,AB,BC分别与y轴,x轴平行,则在原图中三条线段AB,AD,AC中()A最长的是AB,最短的是ACB最长的是AC,最短的是ABC最长的是AB,最短的是ADD最长的是AC,最短的是AD解析:选B.由条件知,原平面图形中ABBC,从而ABADAC.2如图所示,上面的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是()ABC D解析:选D.圆锥的轴截面为等腰三角形,此时符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时符合条件;故
2、截面图形可能是.3已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边长为2的直角三角形,则该三棱锥的正视图可能为()解析:选C.当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4如图,一个三棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为()解析:选D.由正视图和侧视图可知,这是一个水平放置的正三棱柱故选D.5(2019福建漳州调研)某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为()A. B2C3 D2解析:选C.在棱长
3、为2的正方体ABCDA1B1C1D1中,M为AD的中点,该几何体的直观图如图中三棱锥D1MB1C.故通过计算可得D1CD1B1B1C2,D1MMC,MB13,故最长棱的长度为3,故选C.6.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为_解析:由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为212.
4、答案:127一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为_cm.解析:如图,过点A作ACOB,交OB于点C.在RtABC中,AC12(cm),BC835(cm)所以AB13(cm)答案:138已知正四棱锥VABCD中,底面面积为16,一条侧棱的长为2,则该棱锥的高为_解析:如图,取正方形ABCD的中心O,连接VO,AO,则VO就是正四棱锥VABCD的高因为底面面积为16,所以AO2.因为一条侧棱长为2,所以VO6.所以正四棱锥VABCD的高为6.答案:69如图所示的三个图中,上面是一个长方体截去一个角所得多面体的直观图,它的正视图和侧
5、视图如图所示(单位:cm)(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积解:(1)如图(2)所求多面体的体积VV长方体V正三棱锥446(22)2(cm3)10已知正三棱锥VABC的正视图和俯视图如图所示(1)画出该三棱锥的直观图和侧视图(2)求出侧视图的面积解:(1)如图(2)侧视图中VA2.则SVBC226. 综合题组练1(创新型)某几何体的三视图如图所示,则该几何体的侧视图中的虚线部分是()A圆弧 B抛物线的一部分C椭圆的一部分 D双曲线的一部分解析:选D.根据几何体的三视图可得,侧视图中的虚线部分是由平行于旋转轴的平面截圆锥所得,故侧视
6、图中的虚线部分是双曲线的一部分,故选D.2(创新型)某几何体的正视图和侧视图如图(1),它的俯视图的直观图是矩形O1A1B1C1,如图(2),其中O1A16,O1C12,则该几何体的侧面积为()A48 B64C96 D128解析:选C.由题图(2)及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y轴的交点为D,则易知CD2,OD224,所以CO6OA,所以俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为46496.故选C.3.如图,在正方体ABCDA1B1C1D1中,点P是线段A1C1上的动点,则三棱锥PBCD的俯视图与正视图面积之比的
7、最大值为()A1 B.C. D2解析:选D.正视图,底面B,C,D三点,其中D与C重合,随着点P的变化,其正视图均是三角形且点P在正视图中的位置在边B1C1上移动,由此可知,设正方体的棱长为a,则S正视图a2;设A1C1的中点为O,随着点P的移动,在俯视图中,易知当点P在OC1上移动时,S俯视图就是底面三角形BCD的面积,当点P在OA1上移动时,点P越靠近A1,俯视图的面积越大,当到达A1的位置时,俯视图为正方形,此时俯视图的面积最大,S俯视图a2,所以的最大值为2,故选D.4(应用型)已知正方体ABCDA1B1C1D1的体积为1,点M在线段BC上(点M异于B,C两点),点N为线段CC1的中点
8、,若平面AMN截正方体ABCDA1B1C1D1所得的截面为四边形,则线段BM的取值范围为()A. B.C. D.解析:选B.由题意,正方体ABCDA1B1C1D1的棱长为1,如图所示,当点M为线段BC的中点时,截面为四边形AMND1,当0BM时,截面为四边形,当BM时,截面为五边形,故选B.5(2019株洲模拟)已知直三棱柱ABCA1B1C1的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱AA1,BB1,CC1,分别交于三点M,N,Q,若MNQ为直角三角形,则该直角三角形斜边长的最小值为()A2 B3C2 D4解析:选C.如图,不妨设N在B处,AMh,CQm,则MB2h24,BQ2m24,MQ2(hm)24,由MB2BQ2MQ2,得m2hm20.h280即h28,该直角三角形斜边MB2.故选C.6如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处若该小虫爬行的最短路程为4 m,则圆锥底面圆的半径等于_ m.解析:把圆锥侧面沿过点P的母线展开成如图所示的扇形,由题意OP4,PP4,则cosPOP,所以POP.设底面圆的半径为r,则2r4,所以r.答案: