1、安徽省定远县育才学校2021届高三数学上学期第二次月考试题 理第I卷 选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1已知集合Ax|1x3,Bx|2mx BdC.d D.d7已知函数f(x)则不等式f(x)x2的解集为()A1,1 B2,2C2,1 D1,28.函数y的图象大致是()9已知函数f(x)2cos(x)b对任意实数x有ff(x)恒成立,且f1,则实数b的值为()A1 B3C1或3 D310.设a60.4,blog0.40.5,clog80.4,则a,b,c的大小关系是()Aabc BcbaCcab Db
2、ca11函数f(x)x33x1,若对于区间3,2上的任意x1,x2,都有|f(x1)f(x2)|t,则实数t的最小值是()A20 B18C3 D012若,且3cos 2sin,则sin 2的值为()A B. C D.第II卷 非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分) 13已知命题p:axa1,命题q:x24x0,若p是q的充分不必要条件,则a的取值范围是_14已知定义在R上的函数f(x)满足:对于任意的实数x,y,都有f(xy)f(x)y(y2x1),且f(1)3,则函数f(x)的解析式为_15若0a0的解集是_16函数yln|x1|的图象与函数y2cos x(2
3、x4)的图象所有交点的横坐标之和为_三、解答题(本大题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。)17. (本小题满分12分)在ABC中,内角A,B,C所对的边分别为a,b,c.已知bc2acos B.(1)证明:A2B;(2)若ABC的面积S,求角A的大小18(本小题满分12分)已知函数f(x)lg,其中a是大于0的常数(1)求函数f(x)的定义域;(2)当a(1,4)时,求函数f(x)在2,)上的最小值;(3)若对任意x2,)恒有f(x)0,试确定a的取值范围19. (本小题满分12分)已知首项为的等比数列an不是递减数列,其前n项和为Sn(nN*),且S3a3,S5a5
4、,S4a4成等差数列(1)求数列an的通项公式;(2)设TnSn(nN*),求数列Tn的最大项的值与最小项的值20. (本小题满分12分)设f(x)xln xax2(2a1)x,aR.(1)令g(x)f(x),求g(x)的单调区间;(2)已知f(x)在x1处取得极大值,求实数a的取值范围21. (本小题满分12分)已知函数f(x)ab.(1)若a1,求函数f(x)的单调增区间;(2)当x0,时,函数f(x)的值域是5,8,求a,b的值22(本小题满分10分)某书商为提高某套丛书的销售量,准备举办一场展销会据市场调查,当每套丛书售价定为x元时,销售量可达到150.1x万套现出版社为配合该书商的活
5、动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润售价供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?理科数学一、选择题 1D 2A 3D 4 D 5.D 6D7A 8.D 9C 10.B 11A 12C二、填空题 13(0,3) 14f(x)x2x115 166三、解答题17. (1)证明由正弦定理得sin Bsin C2sin Acos B,故2sin Acos
6、Bsin Bsin(AB)sin Bsin Acos Bcos Asin B,于是sin Bsin(AB)又A,B(0,),故0AB,所以B(AB)或BAB,因此A(舍去)或A2B,所以A2B.(2)解由S,得absin C,故有sin Bsin Csin Asin 2Bsin Bcos B,由sin B0,得sin Ccos B.又B,C(0,),所以CB.当BC时,A; 当CB时,A.综上,A或A.18 解(1)由x20,得0,当a1时,x22xa0恒成立,定义域为(0,);当a1时,定义域为x|x0且x1;当0a1时,定义域为x|0x1(2)设g(x)x2,当a(1,4),x2,)时,g
7、(x)10恒成立,所以g(x)x2在2,)上是增函数所以f(x)lg在2,)上是增函数所以f(x)lg在2,)上的最小值为f(2)lg.(3)对任意x2,)恒有f(x)0,即x21对x2,)恒成立所以a3xx2,令h(x)3xx2,而h(x)3xx22在2,)上是减函数,所以h(x)maxh(2)2,所以a2.19. 解(1)设等比数列an的公比为q,因为S3a3,S5a5,S4a4成等差数列,所以S5a5S3a3S4a4S5a5,即4a5a3,于是q2.又an不是递减数列且a1,所以q.故等比数列an的通项公式为ann1(1)n1.(2)由(1)得Sn1n当n为奇数时,Sn随n的增大而减小,
8、所以1SnS1,故0SnS1.当n为偶数时,Sn随n的增大而增大,所以S2SnSnS2.综上,对于nN*,总有Sn.所以数列Tn的最大项的值为,最小项的值为.20. 解(1)由f(x)ln x2ax2a,可得g(x)ln x2ax2a,x(0,),所以g(x)2a.当a0,x(0,)时,g(x)0,函数g(x)单调递增;当a0,x时,g(x)0,函数g(x)单调递增,x时,g(x)0,函数g(x)单调递减所以当a0时,函数g(x)的单调递增区间为(0,);当a0时,函数g(x)的单调递增区间为,单调递减区间为.(2)由(1)知,f(1)0.当a0时,f(x)单调递增,所以当x(0,1)时,f(
9、x)0,f(x)单调递减,当x(1,)时,f(x)0,f(x)单调递增,所以f(x)在x1处取得极小值,不符合题意;当0a,即1时,由(1)知f(x)在上单调递增可得当x(0,1)时,f(x)0,当x时,f(x)0.所以f(x)在(0,1)上单调递减,在上单调递增所以f(x)在x1处取得极小值,不符合题意;当a,即1时,f(x)在(0,1)上单调递增,在(1,)上单调递减,所以当x(0,)时,f(x)0,f(x)单调递减,不符合题意;当a,即01时,当x时,f(x)0,f(x)单调递增,当x(1,)时,f(x)0,f(x)单调递减所以f(x)在x1处取得极大值,符合题意 .综上可知,实数a的取
10、值范围为.21. 解f(x)a(1cos xsin x)basinab.(1)当a1时,f(x)sinb1,由2kx2k(kZ),得2kx2k(kZ),f(x)的单调增区间为(kZ)(2)0x,x,sin1.依题意知a0,当a0时,a33,b5;当a0时,a33,b8.综上所述,a33,b5或a33,b8.22 解(1)每套丛书售价定为100元时,销售量为150.11005(万套),此时每套供货价格为3032(元),书商所获得的总利润为5(10032)340(万元)(2)每套丛书售价定为x元时,由解得0x150.依题意,单套丛书利润Pxx30,所以P120.因为0x0,则(150x)2 21020,当且仅当150x,即x140时等号成立,此时,Pmax20120100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元